shadPS4/src/core/linker.cpp

705 lines
28 KiB
C++
Raw Normal View History

2024-02-23 22:32:32 +01:00
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
2023-11-05 12:22:18 +01:00
#include <Zydis/Zydis.h>
#include <common/assert.h>
#include "common/config.h"
#include "common/logging/log.h"
#include "common/path_util.h"
2023-11-05 12:41:10 +01:00
#include "common/string_util.h"
2023-11-06 00:11:54 +01:00
#include "core/aerolib/aerolib.h"
#include "core/aerolib/stubs.h"
2024-04-13 23:35:48 +02:00
#include "core/libraries/kernel/thread_management.h"
2023-11-06 00:11:54 +01:00
#include "core/linker.h"
#include "core/tls.h"
2023-11-06 00:11:54 +01:00
#include "core/virtual_memory.h"
namespace Core {
2024-03-26 17:29:37 +01:00
static u64 LoadAddress = SYSTEM_RESERVED + CODE_BASE_OFFSET;
static constexpr u64 CODE_BASE_INCR = 0x010000000u;
static u64 GetAlignedSize(const elf_program_header& phdr) {
return (phdr.p_align != 0 ? (phdr.p_memsz + (phdr.p_align - 1)) & ~(phdr.p_align - 1)
: phdr.p_memsz);
}
static u64 CalculateBaseSize(const elf_header& ehdr, std::span<const elf_program_header> phdr) {
u64 base_size = 0;
for (u16 i = 0; i < ehdr.e_phnum; i++) {
if (phdr[i].p_memsz != 0 && (phdr[i].p_type == PT_LOAD || phdr[i].p_type == PT_SCE_RELRO)) {
u64 last_addr = phdr[i].p_vaddr + GetAlignedSize(phdr[i]);
if (last_addr > base_size) {
base_size = last_addr;
}
}
}
return base_size;
}
static std::string EncodeId(u64 nVal) {
std::string enc;
const char pCodes[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+-";
if (nVal < 0x40u) {
enc += pCodes[nVal];
} else {
if (nVal < 0x1000u) {
enc += pCodes[static_cast<u16>(nVal >> 6u) & 0x3fu];
enc += pCodes[nVal & 0x3fu];
} else {
enc += pCodes[static_cast<u16>(nVal >> 12u) & 0x3fu];
enc += pCodes[static_cast<u16>(nVal >> 6u) & 0x3fu];
enc += pCodes[nVal & 0x3fu];
}
}
return enc;
2023-06-14 06:47:44 +02:00
}
Linker::Linker() = default;
Linker::~Linker() = default;
Module* Linker::LoadModule(const std::filesystem::path& elf_name) {
std::scoped_lock lock{m_mutex};
if (!std::filesystem::exists(elf_name)) {
LOG_ERROR(Core_Linker, "Provided module {} does not exist", elf_name.string());
return nullptr;
}
auto& m = m_modules.emplace_back();
m = std::make_unique<Module>();
m->elf.Open(elf_name);
m->file_name = std::filesystem::path(elf_name).filename().string();
if (m->elf.IsElfFile()) {
LoadModuleToMemory(m.get());
LoadDynamicInfo(m.get());
LoadSymbols(m.get());
} else {
m_modules.pop_back();
return nullptr; // It is not a valid elf file //TODO check it why!
}
2023-05-23 06:48:25 +02:00
return m.get();
}
2024-01-20 13:29:23 +01:00
void Linker::LoadModuleToMemory(Module* m) {
// get elf header, program header
2023-10-26 21:55:13 +02:00
const auto elf_header = m->elf.GetElfHeader();
const auto elf_pheader = m->elf.GetProgramHeader();
u64 base_size = CalculateBaseSize(elf_header, elf_pheader);
m->aligned_base_size = (base_size & ~(static_cast<u64>(0x1000) - 1)) +
0x1000; // align base size to 0x1000 block size (TODO is that the default
// block size or it can be changed?
m->base_virtual_addr = VirtualMemory::memory_alloc(LoadAddress, m->aligned_base_size,
VirtualMemory::MemoryMode::ExecuteReadWrite);
2024-03-26 17:29:37 +01:00
LoadAddress += CODE_BASE_INCR * (1 + m->aligned_base_size / CODE_BASE_INCR);
LOG_INFO(Core_Linker, "====Load Module to Memory ========");
LOG_INFO(Core_Linker, "base_virtual_addr ......: {:#018x}", m->base_virtual_addr);
LOG_INFO(Core_Linker, "base_size ..............: {:#018x}", base_size);
LOG_INFO(Core_Linker, "aligned_base_size ......: {:#018x}", m->aligned_base_size);
for (u16 i = 0; i < elf_header.e_phnum; i++) {
switch (elf_pheader[i].p_type) {
case PT_LOAD:
case PT_SCE_RELRO:
if (elf_pheader[i].p_memsz != 0) {
u64 segment_addr = elf_pheader[i].p_vaddr + m->base_virtual_addr;
u64 segment_file_size = elf_pheader[i].p_filesz;
u64 segment_memory_size = GetAlignedSize(elf_pheader[i]);
auto segment_mode = m->elf.ElfPheaderFlagsStr(elf_pheader[i].p_flags);
LOG_INFO(Core_Linker, "program header = [{}] type = {}", i,
m->elf.ElfPheaderTypeStr(elf_pheader[i].p_type));
LOG_INFO(Core_Linker, "segment_addr ..........: {:#018x}", segment_addr);
LOG_INFO(Core_Linker, "segment_file_size .....: {}", segment_file_size);
LOG_INFO(Core_Linker, "segment_memory_size ...: {}", segment_memory_size);
LOG_INFO(Core_Linker, "segment_mode ..........: {}", segment_mode);
m->elf.LoadSegment(segment_addr, elf_pheader[i].p_offset, segment_file_size);
if (elf_pheader[i].p_flags & PF_EXEC) {
PatchTLS(segment_addr, segment_file_size);
}
} else {
LOG_ERROR(Core_Linker, "p_memsz==0 in type {}",
m->elf.ElfPheaderTypeStr(elf_pheader[i].p_type));
}
break;
case PT_DYNAMIC:
if (elf_pheader[i].p_filesz != 0) {
m->m_dynamic.resize(elf_pheader[i].p_filesz);
m->elf.LoadSegment(reinterpret_cast<u64>(m->m_dynamic.data()),
elf_pheader[i].p_offset, elf_pheader[i].p_filesz);
} else {
LOG_ERROR(Core_Linker, "p_filesz==0 in type {}",
m->elf.ElfPheaderTypeStr(elf_pheader[i].p_type));
}
break;
case PT_SCE_DYNLIBDATA:
if (elf_pheader[i].p_filesz != 0) {
m->m_dynamic_data.resize(elf_pheader[i].p_filesz);
m->elf.LoadSegment(reinterpret_cast<u64>(m->m_dynamic_data.data()),
elf_pheader[i].p_offset, elf_pheader[i].p_filesz);
} else {
LOG_ERROR(Core_Linker, "p_filesz==0 in type {}",
m->elf.ElfPheaderTypeStr(elf_pheader[i].p_type));
}
break;
case PT_TLS:
m->tls.image_virtual_addr = elf_pheader[i].p_vaddr + m->base_virtual_addr;
m->tls.image_size = GetAlignedSize(elf_pheader[i]);
LOG_INFO(Core_Linker, "tls virtual address ={:#x}", m->tls.image_virtual_addr);
LOG_INFO(Core_Linker, "tls image size ={}", m->tls.image_size);
break;
2024-03-26 17:48:26 +01:00
case PT_SCE_PROCPARAM:
m->proc_param_virtual_addr = elf_pheader[i].p_vaddr + m->base_virtual_addr;
break;
default:
LOG_ERROR(Core_Linker, "Unimplemented type {}",
m->elf.ElfPheaderTypeStr(elf_pheader[i].p_type));
}
}
LOG_INFO(Core_Linker, "program entry addr ..........: {:#018x}",
m->elf.GetElfEntry() + m->base_virtual_addr);
}
void Linker::LoadDynamicInfo(Module* m) {
for (const auto* dyn = reinterpret_cast<elf_dynamic*>(m->m_dynamic.data());
dyn->d_tag != DT_NULL; dyn++) {
switch (dyn->d_tag) {
case DT_SCE_HASH: // Offset of the hash table.
m->dynamic_info.hash_table =
reinterpret_cast<void*>(m->m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_HASHSZ: // Size of the hash table
m->dynamic_info.hash_table_size = dyn->d_un.d_val;
break;
case DT_SCE_STRTAB: // Offset of the string table.
m->dynamic_info.str_table =
reinterpret_cast<char*>(m->m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_STRSZ: // Size of the string table.
m->dynamic_info.str_table_size = dyn->d_un.d_val;
break;
case DT_SCE_SYMTAB: // Offset of the symbol table.
m->dynamic_info.symbol_table =
reinterpret_cast<elf_symbol*>(m->m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_SYMTABSZ: // Size of the symbol table.
m->dynamic_info.symbol_table_total_size = dyn->d_un.d_val;
break;
case DT_INIT:
m->dynamic_info.init_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_FINI:
m->dynamic_info.fini_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_SCE_PLTGOT: // Offset of the global offset table.
m->dynamic_info.pltgot_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_SCE_JMPREL: // Offset of the table containing jump slots.
m->dynamic_info.jmp_relocation_table =
reinterpret_cast<elf_relocation*>(m->m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_PLTRELSZ: // Size of the global offset table.
m->dynamic_info.jmp_relocation_table_size = dyn->d_un.d_val;
break;
case DT_SCE_PLTREL: // The type of relocations in the relocation table. Should be DT_RELA
m->dynamic_info.jmp_relocation_type = dyn->d_un.d_val;
if (m->dynamic_info.jmp_relocation_type != DT_RELA) {
LOG_WARNING(Core_Linker, "DT_SCE_PLTREL is NOT DT_RELA should check!");
}
break;
case DT_SCE_RELA: // Offset of the relocation table.
m->dynamic_info.relocation_table =
reinterpret_cast<elf_relocation*>(m->m_dynamic_data.data() + dyn->d_un.d_ptr);
break;
case DT_SCE_RELASZ: // Size of the relocation table.
m->dynamic_info.relocation_table_size = dyn->d_un.d_val;
break;
case DT_SCE_RELAENT: // The size of relocation table entries.
m->dynamic_info.relocation_table_entries_size = dyn->d_un.d_val;
if (m->dynamic_info.relocation_table_entries_size !=
0x18) // this value should always be 0x18
{
LOG_WARNING(Core_Linker, "DT_SCE_RELAENT is NOT 0x18 should check!");
}
break;
case DT_INIT_ARRAY: // Address of the array of pointers to initialization functions
m->dynamic_info.init_array_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_FINI_ARRAY: // Address of the array of pointers to termination functions
m->dynamic_info.fini_array_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_INIT_ARRAYSZ: // Size in bytes of the array of initialization functions
m->dynamic_info.init_array_size = dyn->d_un.d_val;
break;
case DT_FINI_ARRAYSZ: // Size in bytes of the array of terminationfunctions
m->dynamic_info.fini_array_size = dyn->d_un.d_val;
break;
case DT_PREINIT_ARRAY: // Address of the array of pointers to pre - initialization functions
m->dynamic_info.preinit_array_virtual_addr = dyn->d_un.d_ptr;
break;
case DT_PREINIT_ARRAYSZ: // Size in bytes of the array of pre - initialization functions
m->dynamic_info.preinit_array_size = dyn->d_un.d_val;
break;
case DT_SCE_SYMENT: // The size of symbol table entries
m->dynamic_info.symbol_table_entries_size = dyn->d_un.d_val;
if (m->dynamic_info.symbol_table_entries_size !=
0x18) // this value should always be 0x18
{
LOG_WARNING(Core_Linker, "DT_SCE_SYMENT is NOT 0x18 should check!");
}
break;
case DT_DEBUG:
m->dynamic_info.debug = dyn->d_un.d_val;
break;
case DT_TEXTREL:
m->dynamic_info.textrel = dyn->d_un.d_val;
break;
case DT_FLAGS:
m->dynamic_info.flags = dyn->d_un.d_val;
if (m->dynamic_info.flags != 0x04) // this value should always be DF_TEXTREL (0x04)
{
LOG_WARNING(Core_Linker, "DT_FLAGS is NOT 0x04 should check!");
}
break;
case DT_NEEDED: // Offset of the library string in the string table to be linked in.
if (m->dynamic_info.str_table !=
nullptr) // in theory this should already be filled from about just make a test case
{
m->dynamic_info.needed.push_back(m->dynamic_info.str_table + dyn->d_un.d_val);
} else {
LOG_ERROR(Core_Linker, "DT_NEEDED str table is not loaded should check!");
}
break;
case DT_SCE_NEEDED_MODULE: {
ModuleInfo info{};
info.value = dyn->d_un.d_val;
info.name = m->dynamic_info.str_table + info.name_offset;
info.enc_id = EncodeId(info.id);
m->dynamic_info.import_modules.push_back(info);
} break;
case DT_SCE_IMPORT_LIB: {
LibraryInfo info{};
info.value = dyn->d_un.d_val;
info.name = m->dynamic_info.str_table + info.name_offset;
info.enc_id = EncodeId(info.id);
m->dynamic_info.import_libs.push_back(info);
} break;
case DT_SCE_FINGERPRINT:
// The fingerprint is a 24 byte (0x18) size buffer that contains a unique identifier for
// the given app. How exactly this is generated isn't known, however it is not necessary
// to have a valid fingerprint. While an invalid fingerprint will cause a warning to be
// printed to the kernel log, the ELF will still load and run.
LOG_INFO(Core_Linker, "unsupported DT_SCE_FINGERPRINT value = ..........: {:#018x}",
dyn->d_un.d_val);
break;
case DT_SCE_IMPORT_LIB_ATTR:
// The upper 32-bits should contain the module index multiplied by 0x10000. The lower
// 32-bits should be a constant 0x9.
LOG_INFO(Core_Linker, "unsupported DT_SCE_IMPORT_LIB_ATTR value = ......: {:#018x}",
dyn->d_un.d_val);
break;
case DT_SCE_ORIGINAL_FILENAME:
m->dynamic_info.filename = m->dynamic_info.str_table + dyn->d_un.d_val;
break;
case DT_SCE_MODULE_INFO: // probably only useable in shared modules
{
ModuleInfo info{};
info.value = dyn->d_un.d_val;
info.name = m->dynamic_info.str_table + info.name_offset;
info.enc_id = EncodeId(info.id);
m->dynamic_info.export_modules.push_back(info);
} break;
case DT_SCE_MODULE_ATTR:
// TODO?
LOG_INFO(Core_Linker, "unsupported DT_SCE_MODULE_ATTR value = ..........: {:#018x}",
dyn->d_un.d_val);
break;
case DT_SCE_EXPORT_LIB: {
LibraryInfo info{};
info.value = dyn->d_un.d_val;
info.name = m->dynamic_info.str_table + info.name_offset;
info.enc_id = EncodeId(info.id);
m->dynamic_info.export_libs.push_back(info);
} break;
default:
LOG_INFO(Core_Linker, "unsupported dynamic tag ..........: {:#018x}", dyn->d_tag);
}
}
2023-06-13 06:43:58 +02:00
}
const ModuleInfo* Linker::FindModule(const Module& m, const std::string& id) {
const auto& import_modules = m.dynamic_info.import_modules;
int index = 0;
for (const auto& mod : import_modules) {
if (mod.enc_id.compare(id) == 0) {
return &import_modules.at(index);
}
index++;
}
const auto& export_modules = m.dynamic_info.export_modules;
index = 0;
for (const auto& mod : export_modules) {
if (mod.enc_id.compare(id) == 0) {
return &export_modules.at(index);
}
index++;
}
return nullptr;
2023-06-18 16:54:22 +02:00
}
const LibraryInfo* Linker::FindLibrary(const Module& m, const std::string& id) {
const auto& import_libs = m.dynamic_info.import_libs;
int index = 0;
for (const auto& lib : import_libs) {
if (lib.enc_id.compare(id) == 0) {
return &import_libs.at(index);
}
index++;
}
const auto& export_libs = m.dynamic_info.export_libs;
index = 0;
for (const auto& lib : export_libs) {
if (lib.enc_id.compare(id) == 0) {
return &export_libs.at(index);
}
index++;
}
return nullptr;
2023-06-18 16:54:22 +02:00
}
void Linker::LoadSymbols(Module* m) {
2023-06-26 17:12:19 +02:00
const auto symbol_database = [this](Module* m, Loader::SymbolsResolver* symbol,
bool export_func) {
if (m->dynamic_info.symbol_table == nullptr || m->dynamic_info.str_table == nullptr ||
m->dynamic_info.symbol_table_total_size == 0) {
LOG_INFO(Core_Linker, "Symbol table not found!");
return;
}
for (auto* sym = m->dynamic_info.symbol_table;
reinterpret_cast<u8*>(sym) < reinterpret_cast<u8*>(m->dynamic_info.symbol_table) +
m->dynamic_info.symbol_table_total_size;
sym++) {
std::string id = std::string(m->dynamic_info.str_table + sym->st_name);
auto bind = sym->GetBind();
auto type = sym->GetType();
auto visibility = sym->GetVisibility();
const auto ids = Common::SplitString(id, '#');
if (ids.size() == 3) {
const auto* library = FindLibrary(*m, ids.at(1));
const auto* module = FindModule(*m, ids.at(2));
ASSERT_MSG(library && module, "Unable to find library and module");
if ((bind == STB_GLOBAL || bind == STB_WEAK) &&
(type == STT_FUN || type == STT_OBJECT) &&
export_func == (sym->st_value != 0)) {
std::string nidName = "";
auto aeronid = AeroLib::FindByNid(ids.at(0).c_str());
if (aeronid != nullptr) {
nidName = aeronid->name;
} else {
nidName = "UNK";
}
Loader::SymbolResolver sym_r{};
sym_r.name = ids.at(0);
sym_r.nidName = nidName;
sym_r.library = library->name;
sym_r.library_version = library->version;
sym_r.module = module->name;
sym_r.module_version_major = module->version_major;
sym_r.module_version_minor = module->version_minor;
switch (type) {
case STT_NOTYPE:
sym_r.type = Loader::SymbolType::NoType;
break;
case STT_FUN:
sym_r.type = Loader::SymbolType::Function;
break;
case STT_OBJECT:
sym_r.type = Loader::SymbolType::Object;
break;
default:
sym_r.type = Loader::SymbolType::Unknown;
break;
}
symbol->AddSymbol(sym_r,
2024-03-26 16:17:59 +01:00
(export_func ? sym->st_value + m->base_virtual_addr : 0));
}
}
}
};
symbol_database(m, &m->export_sym, true);
symbol_database(m, &m->import_sym, false);
2023-07-04 17:34:23 +02:00
}
void Linker::Relocate(Module* m) {
const auto relocate = [this](u32 idx, elf_relocation* rel, Module* m, bool isJmpRel) {
auto type = rel->GetType();
auto symbol = rel->GetSymbol();
auto addend = rel->rel_addend;
auto* symbolsTlb = m->dynamic_info.symbol_table;
auto* namesTlb = m->dynamic_info.str_table;
u64 rel_value = 0;
u64 rel_base_virtual_addr = m->base_virtual_addr;
u64 rel_virtual_addr = m->base_virtual_addr + rel->rel_offset;
bool rel_isResolved = false;
Loader::SymbolType rel_sym_type = Loader::SymbolType::Unknown;
std::string rel_name;
switch (type) {
case R_X86_64_RELATIVE:
rel_value = rel_base_virtual_addr + addend;
rel_isResolved = true;
break;
2024-03-26 16:17:59 +01:00
case R_X86_64_DTPMOD64:
rel_value = reinterpret_cast<uint64_t>(m);
rel_isResolved = true;
rel_sym_type = Loader::SymbolType::Tls;
break;
case R_X86_64_GLOB_DAT:
case R_X86_64_JUMP_SLOT:
addend = 0;
case R_X86_64_64: {
auto sym = symbolsTlb[symbol];
auto sym_bind = sym.GetBind();
auto sym_type = sym.GetType();
auto sym_visibility = sym.GetVisibility();
u64 symbol_vitrual_addr = 0;
Loader::SymbolRecord symrec{};
switch (sym_type) {
case STT_FUN:
rel_sym_type = Loader::SymbolType::Function;
break;
case STT_OBJECT:
rel_sym_type = Loader::SymbolType::Object;
break;
2024-03-26 16:17:59 +01:00
case STT_NOTYPE:
rel_sym_type = Loader::SymbolType::NoType;
break;
default:
2024-03-26 16:17:59 +01:00
ASSERT_MSG(0, "unknown symbol type {}", sym_type);
}
if (sym_visibility != 0) // should be zero log if else
{
LOG_INFO(Core_Linker, "symbol visilibity !=0");
}
switch (sym_bind) {
2024-03-26 16:17:59 +01:00
case STB_LOCAL:
symbol_vitrual_addr = rel_base_virtual_addr + sym.st_value;
break;
case STB_GLOBAL:
2024-03-26 16:17:59 +01:00
case STB_WEAK: {
rel_name = namesTlb + sym.st_name;
Resolve(rel_name, rel_sym_type, m, &symrec);
symbol_vitrual_addr = symrec.virtual_address;
2024-03-26 16:17:59 +01:00
} break;
default:
2024-03-26 16:17:59 +01:00
ASSERT_MSG(0, "unknown bind type {}", sym_bind);
}
2024-03-26 16:17:59 +01:00
rel_isResolved = (symbol_vitrual_addr != 0);
rel_value = (rel_isResolved ? symbol_vitrual_addr + addend : 0);
rel_name = symrec.name;
} break;
default:
LOG_INFO(Core_Linker, "UNK type {:#010x} rel symbol : {:#010x}", type, symbol);
}
if (rel_isResolved) {
VirtualMemory::memory_patch(rel_virtual_addr, rel_value);
} else {
LOG_INFO(Core_Linker, "function not patched! {}", rel_name);
}
};
2023-07-06 20:55:41 +02:00
u32 idx = 0;
for (auto* rel = m->dynamic_info.relocation_table;
2024-02-23 22:32:32 +01:00
reinterpret_cast<u8*>(rel) < reinterpret_cast<u8*>(m->dynamic_info.relocation_table) +
m->dynamic_info.relocation_table_size;
rel++, idx++) {
relocate(idx, rel, m, false);
}
idx = 0;
for (auto* rel = m->dynamic_info.jmp_relocation_table;
2024-02-23 22:32:32 +01:00
reinterpret_cast<u8*>(rel) < reinterpret_cast<u8*>(m->dynamic_info.jmp_relocation_table) +
m->dynamic_info.jmp_relocation_table_size;
rel++, idx++) {
relocate(idx, rel, m, true);
}
}
template <typename T>
bool contains(const std::vector<T>& vecObj, const T& element) {
auto it = std::find(vecObj.begin(), vecObj.end(), element);
return it != vecObj.end();
}
Module* Linker::FindExportedModule(const ModuleInfo& module, const LibraryInfo& library) {
// std::scoped_lock lock{m_mutex};
for (auto& m : m_modules) {
const auto& export_libs = m->dynamic_info.export_libs;
const auto& export_modules = m->dynamic_info.export_modules;
if (contains(export_libs, library) && contains(export_modules, module)) {
return m.get();
}
}
return nullptr;
}
void Linker::Resolve(const std::string& name, Loader::SymbolType sym_type, Module* m,
Loader::SymbolRecord* return_info) {
// std::scoped_lock lock{m_mutex};
const auto ids = Common::SplitString(name, '#');
2024-04-09 12:39:35 +02:00
if (ids.size() == 3) {
const auto* library = FindLibrary(*m, ids.at(1));
const auto* module = FindModule(*m, ids.at(2));
ASSERT_MSG(library && module, "Unable to find library and module");
Loader::SymbolResolver sr{};
sr.name = ids.at(0);
sr.library = library->name;
sr.library_version = library->version;
sr.module = module->name;
sr.module_version_major = module->version_major;
sr.module_version_minor = module->version_minor;
sr.type = sym_type;
const Loader::SymbolRecord* rec = nullptr;
rec = m_hle_symbols.FindSymbol(sr);
if (rec == nullptr) {
// check if it an export function
if (auto* p = FindExportedModule(*module, *library);
p != nullptr && p->export_sym.GetSize() > 0) {
rec = p->export_sym.FindSymbol(sr);
}
}
2024-04-09 12:39:35 +02:00
if (rec != nullptr) {
*return_info = *rec;
} else {
2024-04-09 12:39:35 +02:00
auto aeronid = AeroLib::FindByNid(sr.name.c_str());
if (aeronid) {
return_info->name = aeronid->name;
return_info->virtual_address = AeroLib::GetStub(aeronid->nid);
} else {
return_info->virtual_address = AeroLib::GetStub(sr.name.c_str());
return_info->name = "Unknown !!!";
}
LOG_ERROR(Core_Linker, "Linker: Stub resolved {} as {} (lib: {}, mod: {})", sr.name,
return_info->name, library->name, module->name);
}
2024-04-09 12:40:03 +02:00
} else {
2024-04-09 12:39:35 +02:00
return_info->virtual_address = 0;
return_info->name = name;
LOG_ERROR(Core_Linker, "Not Resolved {}", name);
}
}
2024-03-26 17:48:26 +01:00
u64 Linker::GetProcParam() {
// std::scoped_lock lock{m_mutex};
for (auto& m : m_modules) {
if (!m->elf.IsSharedLib()) {
return m->proc_param_virtual_addr;
}
}
return 0;
}
using exit_func_t = PS4_SYSV_ABI void (*)();
using entry_func_t = PS4_SYSV_ABI void (*)(EntryParams* params, exit_func_t atexit_func);
2024-03-26 17:13:27 +01:00
using module_ini_func_t = PS4_SYSV_ABI int (*)(size_t args, const void* argp, module_func_t func);
static PS4_SYSV_ABI int run_module(uint64_t addr, size_t args, const void* argp,
module_func_t func) {
return reinterpret_cast<module_ini_func_t>(addr)(args, argp, func);
}
int Linker::StartModule(Module* m, size_t args, const void* argp, module_func_t func) {
2024-03-27 07:41:14 +01:00
LOG_INFO(Core_Linker, "Module started : {}", m->file_name);
2024-03-26 17:13:27 +01:00
return run_module(m->dynamic_info.init_virtual_addr + m->base_virtual_addr, args, argp, func);
}
void Linker::StartAllModules() {
std::scoped_lock lock{m_mutex};
for (auto& m : m_modules) {
if (m->elf.IsSharedLib()) {
StartModule(m.get(), 0, nullptr, nullptr);
}
}
}
static PS4_SYSV_ABI void ProgramExitFunc() {
fmt::print("exit function called\n");
}
static void RunMainEntry(u64 addr, EntryParams* params, exit_func_t exit_func) {
// reinterpret_cast<entry_func_t>(addr)(params, exit_func); // can't be used, stack has to have
// a specific layout
asm volatile("andq $-16, %%rsp\n" // Align to 16 bytes
"subq $8, %%rsp\n" // videoout_basic expects the stack to be misaligned
// Kernel also pushes some more things here during process init
// at least: environment, auxv, possibly other things
"pushq 8(%1)\n" // copy EntryParams to top of stack like the kernel does
"pushq 0(%1)\n" // OpenOrbis expects to find it there
"movq %1, %%rdi\n" // also pass params and exit func
"movq %2, %%rsi\n" // as before
"jmp *%0\n" // can't use call here, as that would mangle the prepared stack.
// there's no coming back
:
: "r"(addr), "r"(params), "r"(exit_func)
2024-04-13 23:35:48 +02:00
: "rax", "rsi", "rdi", "rsp");
}
2023-11-06 00:11:54 +01:00
void Linker::Execute() {
if (Config::debugDump()) {
DebugDump();
}
2024-04-13 23:35:48 +02:00
Libraries::Kernel::pthreadInitSelfMainThread();
// Relocate all modules
2024-03-26 16:33:48 +01:00
for (const auto& m : m_modules) {
Relocate(m.get());
}
2024-03-26 17:13:27 +01:00
StartAllModules();
EntryParams p{};
p.argc = 1;
p.argv[0] = "eboot.bin"; // hmm should be ok?
2024-03-26 17:13:27 +01:00
for (auto& m : m_modules) {
if (!m->elf.IsSharedLib()) {
RunMainEntry(m->elf.GetElfEntry() + m->base_virtual_addr, &p, ProgramExitFunc);
}
}
2023-10-26 21:55:13 +02:00
}
2023-11-06 00:11:54 +01:00
void Linker::DebugDump() {
std::scoped_lock lock{m_mutex};
const auto& log_dir = Common::FS::GetUserPath(Common::FS::PathType::LogDir);
const std::filesystem::path debug(log_dir / "debugdump");
std::filesystem::create_directory(debug);
for (const auto& m : m_modules) {
// TODO make a folder with game id for being more unique?
const std::filesystem::path filepath(debug / m.get()->file_name);
std::filesystem::create_directory(filepath);
m.get()->import_sym.DebugDump(filepath / "imports.txt");
m.get()->export_sym.DebugDump(filepath / "exports.txt");
}
}
2023-11-06 00:11:54 +01:00
} // namespace Core