shadPS4/src/video_core/amdgpu/pm4_cmds.h

708 lines
21 KiB
C++

// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <cstring>
#include "common/bit_field.h"
#include "common/rdtsc.h"
#include "common/types.h"
#include "core/platform.h"
#include "video_core/amdgpu/pm4_opcodes.h"
namespace AmdGpu {
/// This enum defines the Shader types supported in PM4 type 3 header
enum class PM4ShaderType : u32 {
ShaderGraphics = 0, ///< Graphics shader
ShaderCompute = 1 ///< Compute shader
};
/// This enum defines the predicate value supported in PM4 type 3 header
enum class PM4Predicate : u32 {
PredDisable = 0, ///< Predicate disabled
PredEnable = 1 ///< Predicate enabled
};
union PM4Type0Header {
u32 raw;
BitField<0, 16, u32> base; ///< DWORD Memory-mapped address
BitField<16, 14, u32> count; ///< Count of DWORDs in the *information* body (N - 1 for N dwords)
BitField<30, 2, u32> type; ///< Packet identifier. It should be 0 for type 0 packets.
u32 NumWords() const {
return count + 1;
}
};
union PM4Type3Header {
constexpr PM4Type3Header(PM4ItOpcode code, u32 num_words_min_one,
PM4ShaderType stype = PM4ShaderType::ShaderGraphics,
PM4Predicate pred = PM4Predicate::PredDisable) {
raw = 0;
predicate.Assign(pred);
shader_type.Assign(stype);
opcode.Assign(code);
count.Assign(num_words_min_one);
type.Assign(3);
}
u32 NumWords() const {
return count + 1;
}
u32 raw;
BitField<0, 1, PM4Predicate> predicate; ///< Predicated version of packet when set
BitField<1, 1, PM4ShaderType> shader_type; ///< 0: Graphics, 1: Compute Shader
BitField<8, 8, PM4ItOpcode> opcode; ///< IT opcode
BitField<16, 14, u32> count; ///< Number of DWORDs - 1 in the information body.
BitField<30, 2, u32> type; ///< Packet identifier. It should be 3 for type 3 packets
};
union PM4Header {
u32 raw;
PM4Type0Header type0;
PM4Type3Header type3;
BitField<30, 2, u32> type;
};
// Write the PM4 header
template <PM4ItOpcode opcode>
constexpr u32* WriteHeader(u32* cmdbuf, u32 size,
PM4ShaderType type = PM4ShaderType::ShaderGraphics,
PM4Predicate predicate = PM4Predicate::PredDisable) {
PM4Type3Header header{opcode, size - 1, type, predicate};
std::memcpy(cmdbuf, &header, sizeof(header));
return ++cmdbuf;
}
// Write arguments
template <typename... Args>
constexpr u32* WriteBody(u32* cmdbuf, Args... data) {
const std::array<u32, sizeof...(Args)> args{data...};
std::memcpy(cmdbuf, args.data(), sizeof(args));
cmdbuf += args.size();
return cmdbuf;
}
template <PM4ItOpcode opcode, typename... Args>
constexpr u32* WritePacket(u32* cmdbuf, PM4ShaderType type, Args... data) {
cmdbuf = WriteHeader<opcode>(cmdbuf, sizeof...(Args), type);
cmdbuf = WriteBody(cmdbuf, data...);
return cmdbuf;
}
union ContextControlEnable {
u32 raw;
BitField<0, 1, u32> enable_single_cntx_config_reg; ///< single context config reg
BitField<1, 1, u32> enable_multi_cntx_render_reg; ///< multi context render state reg
BitField<15, 1, u32> enable_user_config_reg__CI; ///< User Config Reg on CI(reserved for SI)
BitField<16, 1, u32> enable_gfx_sh_reg; ///< Gfx SH Registers
BitField<24, 1, u32> enable_cs_sh_reg; ///< CS SH Registers
BitField<31, 1, u32> enable_dw; ///< DW enable
};
struct PM4CmdContextControl {
PM4Type3Header header;
ContextControlEnable load_control; ///< Enable bits for loading
ContextControlEnable shadow_enable; ///< Enable bits for shadowing
};
union LoadAddressHigh {
u32 raw;
BitField<0, 16, u32>
addr_hi; ///< bits for the block in Memory from where the CP will fetch the state
BitField<31, 1, u32>
wait_idle; ///< if set the CP will wait for the graphics pipe to be idle by writing
///< to the GRBM Wait Until register with "Wait for 3D idle"
};
/**
* PM4CMDLOADDATA can be used with the following opcodes
* - IT_LOAD_CONFIG_REG
* - IT_LOAD_CONTEXT_REG
* - IT_LOAD_SH_REG
*/
struct PM4CmdLoadData {
PM4Type3Header header;
u32 addr_lo; ///< low 32 address bits for the block in memory from where the CP will fetch the
///< state
LoadAddressHigh addr_hi;
u32 reg_offset; ///< offset in DWords from the register base address
u32 num_dwords; ///< number of DWords that the CP will fetch and write into the chip. A value of
///< zero will fetch nothing
};
enum class LoadDataIndex : u32 {
DirectAddress = 0, /// ADDR_LO is direct address
Offset = 1, /// ARRD_LO is ignored and memory offset is in addrOffset
};
enum class LoadDataFormat : u32 {
OffsetAndSize = 0, /// Data is consecutive DWORDs
OffsetAndData = 1, /// Register offset and data is interleaved
};
union LoadAddressLow {
u32 raw;
BitField<0, 1, LoadDataIndex> index;
BitField<2, 30, u32> addr_lo; ///< bits for the block in Memory from where the CP will fetch the
///< state. DWORD aligned
};
/**
* PM4CMDLOADDATAINDEX can be used with the following opcodes (VI+)
* - IT_LOAD_CONTEXT_REG_INDEX
* - IT_LOAD_SH_REG_INDEX
*/
struct PM4CmdLoadDataIndex {
PM4Type3Header header;
LoadAddressLow addr_lo; ///< low 32 address bits for the block in memory from where the CP will
///< fetch the state
u32 addr_offset; ///< addrLo.index = 1 Indexed mode
union {
BitField<0, 16, u32> reg_offset; ///< offset in DWords from the register base address
BitField<31, 1, LoadDataFormat> data_format;
u32 raw;
};
u32 num_dwords; ///< Number of DWords that the CP will fetch and write
///< into the chip. A value of zero will fetch nothing
};
/**
* PM4CMDSETDATA can be used with the following opcodes:
*
* - IT_SET_CONFIG_REG
* - IT_SET_CONTEXT_REG
* - IT_SET_CONTEXT_REG_INDIRECT
* - IT_SET_SH_REG
* - IT_SET_SH_REG_INDEX
* - IT_SET_UCONFIG_REG
*/
struct PM4CmdSetData {
PM4Type3Header header;
union {
u32 raw;
BitField<0, 16, u32> reg_offset; ///< Offset in DWords from the register base address
BitField<28, 4, u32> index; ///< Index for UCONFIG/CONTEXT on CI+
///< Program to zero for other opcodes and on SI
};
template <PM4ShaderType type = PM4ShaderType::ShaderGraphics, typename... Args>
static constexpr u32* SetContextReg(u32* cmdbuf, Args... data) {
return WritePacket<PM4ItOpcode::SetContextReg>(cmdbuf, type, data...);
}
template <PM4ShaderType type = PM4ShaderType::ShaderGraphics, typename... Args>
static constexpr u32* SetShReg(u32* cmdbuf, Args... data) {
return WritePacket<PM4ItOpcode::SetShReg>(cmdbuf, type, data...);
}
};
struct PM4CmdNop {
PM4Type3Header header;
u32 data_block[0];
enum PayloadType : u32 {
DebugMarkerPush = 0x68750001u, ///< Begin of GPU event scope
DebugMarkerPop = 0x68750002u, ///< End of GPU event scope
SetVsharpInUdata = 0x68750004u, ///< Indicates that V# will be set in the next packet
SetTsharpInUdata = 0x68750005u, ///< Indicates that T# will be set in the next packet
SetSsharpInUdata = 0x68750006u, ///< Indicates that S# will be set in the next packet
DebugColorMarkerPush = 0x6875000eu, ///< Begin of GPU event scope with color
PatchedFlip = 0x68750776u, ///< Patched flip marker
PrepareFlip = 0x68750777u, ///< Flip marker
PrepareFlipLabel = 0x68750778u, ///< Flip marker with label address
PrepareFlipInterrupt = 0x68750780u, ///< Flip marker with interrupt
PrepareFlipInterruptLabel = 0x68750781u, ///< Flip marker with interrupt and label
};
};
struct PM4CmdDrawIndexOffset2 {
PM4Type3Header header;
u32 max_size; ///< Maximum number of indices
u32 index_offset; ///< Zero based starting index number in the index buffer
u32 index_count; ///< number of indices in the Index Buffer
u32 draw_initiator; ///< draw Initiator Register
};
struct PM4CmdDrawIndex2 {
PM4Type3Header header;
u32 max_size; ///< maximum number of indices
u32 index_base_lo; ///< base Address Lo [31:1] of Index Buffer
///< (Word-Aligned). Written to the VGT_DMA_BASE register.
u32 index_base_hi; ///< base Address Hi [39:32] of Index Buffer.
///< Written to the VGT_DMA_BASE_HI register
u32 index_count; ///< number of indices in the Index Buffer.
///< Written to the VGT_NUM_INDICES register.
u32 draw_initiator; ///< written to the VGT_DRAW_INITIATOR register
};
struct PM4CmdDrawIndexType {
PM4Type3Header header;
union {
u32 raw;
BitField<0, 2, u32> index_type; ///< Select 16 Vs 32bit index
BitField<2, 2, u32> swap_mode; ///< DMA swap mode
};
};
struct PM4CmdDrawIndexAuto {
PM4Type3Header header;
u32 index_count;
u32 draw_initiator;
};
struct PM4CmdDrawIndirect {
PM4Type3Header header; ///< header
u32 data_offset; ///< DWORD aligned offset
union {
u32 dw2;
BitField<0, 16, u32> base_vtx_loc; ///< base vertex location
};
union {
u32 dw3;
BitField<0, 16, u32> start_inst_loc; ///< start instance location
};
u32 draw_initiator; ///< Draw Initiator Register
};
enum class DataSelect : u32 {
None = 0,
Data32Low = 1,
Data64 = 2,
GpuClock64 = 3,
PerfCounter = 4,
};
enum class InterruptSelect : u32 {
None = 0,
IrqOnly = 1,
IrqWhenWriteConfirm = 2,
IrqUndocumented = 3,
};
static u64 GetGpuClock64() {
auto now = std::chrono::high_resolution_clock::now();
auto duration = now.time_since_epoch();
auto ticks = std::chrono::duration_cast<std::chrono::nanoseconds>(duration).count();
return static_cast<u64>(ticks);
}
struct PM4CmdEventWriteEop {
PM4Type3Header header;
union {
u32 event_control;
BitField<0, 6, u32> event_type; ///< Event type written to VGT_EVENT_INITIATOR
BitField<8, 4, u32> event_index; ///< Event index
};
u32 address_lo;
union {
u32 data_control;
BitField<0, 16, u32> address_hi; ///< High bits of address
BitField<24, 2, InterruptSelect> int_sel; ///< Selects interrupt action for end-of-pipe
BitField<29, 3, DataSelect> data_sel; ///< Selects source of data
};
u32 data_lo; ///< Value that will be written to memory when event occurs
u32 data_hi; ///< Value that will be written to memory when event occurs
template <typename T>
T* Address() const {
return reinterpret_cast<T*>(address_lo | u64(address_hi) << 32);
}
u32 DataDWord() const {
return data_lo;
}
u64 DataQWord() const {
return data_lo | u64(data_hi) << 32;
}
void SignalFence() const {
switch (data_sel.Value()) {
case DataSelect::None: {
break;
}
case DataSelect::Data32Low: {
*Address<u32>() = DataDWord();
break;
}
case DataSelect::Data64: {
*Address<u64>() = DataQWord();
break;
}
case DataSelect::GpuClock64: {
*Address<u64>() = GetGpuClock64();
break;
}
case DataSelect::PerfCounter: {
*Address<u64>() = Common::FencedRDTSC();
break;
}
default: {
UNREACHABLE();
}
}
switch (int_sel.Value()) {
case InterruptSelect::None: {
// No interrupt
break;
}
case InterruptSelect::IrqOnly:
ASSERT(data_sel == DataSelect::None);
[[fallthrough]];
case InterruptSelect::IrqWhenWriteConfirm: {
Platform::IrqC::Instance()->Signal(Platform::InterruptId::GfxEop);
break;
}
default: {
UNREACHABLE();
}
}
}
};
struct PM4DmaData {
PM4Type3Header header;
union {
BitField<0, 1, u32> engine;
BitField<12, 1, u32> src_atc;
BitField<13, 2, u32> src_cache_policy;
BitField<15, 1, u32> src_volatile;
BitField<20, 2, u32> dst_sel;
BitField<24, 1, u32> dst_atc;
BitField<25, 2, u32> dst_cache_policy;
BitField<27, 1, u32> dst_volatile;
BitField<29, 2, u32> src_sel;
BitField<31, 1, u32> cp_sync;
};
union {
u32 src_addr_lo;
u32 data;
};
u32 src_addr_hi;
u32 dst_addr_lo;
u32 dst_addr_hi;
u32 command;
};
struct PM4CmdWaitRegMem {
enum class Engine : u32 { Me = 0u, Pfp = 1u };
enum class MemSpace : u32 { Register = 0u, Memory = 1u };
enum class Function : u32 {
Always = 0u,
LessThan = 1u,
LessThanEqual = 2u,
Equal = 3u,
NotEqual = 4u,
GreaterThanEqual = 5u,
GreaterThan = 6u,
Reserved = 7u
};
PM4Type3Header header;
union {
BitField<0, 3, Function> function;
BitField<4, 1, MemSpace> mem_space;
BitField<8, 1, Engine> engine;
u32 raw;
};
u32 poll_addr_lo;
u32 poll_addr_hi;
u32 ref;
u32 mask;
u32 poll_interval;
template <typename T = u32*>
T Address() const {
return reinterpret_cast<T>((uintptr_t(poll_addr_hi) << 32) | poll_addr_lo);
}
bool Test() const {
switch (function.Value()) {
case Function::Always: {
return true;
}
case Function::LessThan: {
return (*Address() & mask) < ref;
}
case Function::LessThanEqual: {
return (*Address() & mask) <= ref;
}
case Function::Equal: {
return (*Address() & mask) == ref;
}
case Function::NotEqual: {
return (*Address() & mask) != ref;
}
case Function::GreaterThanEqual: {
return (*Address() & mask) >= ref;
}
case Function::GreaterThan: {
return (*Address() & mask) > ref;
}
case Function::Reserved:
[[fallthrough]];
default: {
UNREACHABLE();
}
}
}
};
struct PM4CmdWriteData {
PM4Type3Header header;
union {
BitField<8, 11, u32> dst_sel;
BitField<16, 1, u32> wr_one_addr;
BitField<20, 1, u32> wr_confirm;
BitField<30, 1, u32> engine_sel;
u32 raw;
};
union {
struct {
u32 dst_addr_lo;
u32 dst_addr_hi;
};
u64 addr64;
};
u32 data[0];
template <typename T>
void Address(T addr) {
addr64 = static_cast<u64>(addr);
}
template <typename T>
T Address() const {
return reinterpret_cast<T>(addr64);
}
};
struct PM4CmdEventWriteEos {
enum class Command : u32 {
GdsStore = 1u,
SingalFence = 2u,
};
PM4Type3Header header;
union {
u32 event_control;
BitField<0, 6, u32> event_type; ///< Event type written to VGT_EVENT_INITIATOR
BitField<8, 4, u32> event_index; ///< Event index
};
u32 address_lo;
union {
u32 cmd_info;
BitField<0, 16, u32> address_hi; ///< High bits of address
BitField<29, 3, Command> command; ///< Command
};
union {
u32 data; ///< Fence value that will be written to memory when event occurs
BitField<0, 16, u32>
gds_index; ///< Indexed offset from the start of the segment within the partition
BitField<16, 16, u32> size; ///< Number of DWs to read from the GDS
};
template <typename T = u32*>
T Address() const {
return reinterpret_cast<T>(address_lo | u64(address_hi) << 32);
}
u32 DataDWord() const {
return this->data;
}
void SignalFence() const {
switch (command.Value()) {
case Command::SingalFence: {
*Address() = DataDWord();
break;
}
default: {
UNREACHABLE();
}
}
}
};
struct PM4WriteConstRam {
PM4Type3Header header;
union {
BitField<0, 16, u32> offset; ///< Starting DW granularity offset into the constant RAM.
///< Thus, bits[1:0] are zero.
u32 dw1;
};
u32 data[0];
[[nodiscard]] u32 Offset() const {
return offset.Value();
}
[[nodiscard]] u32 Size() const {
return header.count << 2u;
}
};
struct PM4DumpConstRam {
PM4Type3Header header;
union {
BitField<0, 16, u32> offset; ///< Starting byte offset into the Constant RAM. The minimum
///< granularity is 4 bytes
u32 dw1;
};
union {
BitField<0, 15, u32>
num_dw; ///< Number of DWs to read from the constant RAM. The minimum granularity is DWs
u32 dw2;
};
u32 addr_lo;
u32 addr_hi;
template <typename T>
T Address() const {
return reinterpret_cast<T>((u64(addr_hi) << 32u) | addr_lo);
}
[[nodiscard]] u32 Offset() const {
return offset.Value();
}
[[nodiscard]] u32 Size() const {
return num_dw.Value() << 2u;
}
};
struct PM4CmdDispatchDirect {
PM4Type3Header header;
u32 dim_x; ///< X dimensions of the array of thread groups to be dispatched
u32 dim_y; ///< Y dimensions of the array of thread groups to be dispatched
u32 dim_z; ///< Z dimensions of the array of thread groups to be dispatched
u32 dispatch_initiator; ///< Dispatch Initiator Register
};
struct PM4CmdDrawNumInstances {
PM4Type3Header header;
u32 num_instances;
};
struct PM4CmdDrawIndexBase {
PM4Type3Header header;
u32 addr_lo;
u32 addr_hi;
};
struct PM4CmdDrawIndexBufferSize {
PM4Type3Header header;
u32 num_indices;
};
struct PM4CmdIndirectBuffer {
PM4Type3Header header;
u32 ibase_lo; ///< Indirect buffer base address, must be 4 byte aligned
union {
BitField<0, 16, u32> ibase_hi; ///< Indirect buffer base address
u32 dw1;
};
union {
BitField<0, 20, u32> ib_size; ///< Indirect buffer size
BitField<20, 1, u32> chain; ///< set to chain to IB allocations
BitField<24, 8, u32> vmid; ///< Virtual memory domain ID for command buffer
u32 dw2;
};
template <typename T>
T* Address() const {
return reinterpret_cast<T*>((u64(ibase_hi) << 32u) | ibase_lo);
}
};
struct PM4CmdReleaseMem {
PM4Type3Header header;
union {
BitField<0, 6, u32> event_type; ///< Event type written to VGT_EVENT_INITIATOR
BitField<8, 4, u32> event_index; ///< Event index
BitField<12, 1, u32> tcl1_vol_action_ena;
BitField<13, 1, u32> tc_vol_action_ena;
BitField<15, 1, u32> tc_wb_action_ena;
BitField<16, 1, u32> tcl1__action_ena;
BitField<17, 1, u32> tc_action_ena;
BitField<25, 2, u32> cache_policy; ///< Cache Policy setting used for writing fences and
///< timestamps to the TCL2
u32 dw1;
};
union {
BitField<16, 2, u32> dst_sel; ///< destination select
BitField<24, 3, InterruptSelect> int_sel; ///< selects interrupt action for end-of-pipe
BitField<29, 3, DataSelect> data_sel; ///< selects source of data
u32 dw2;
};
u32 address_lo; ///< low bits of address
u32 address_hi; ///< high bits of address
union {
struct {
u16 gds_index; ///< Byte offset into GDS to copy from
u16 num_dw; ///< Number of DWORDS of GDS to copy
};
u32 data_lo; ///< value that will be written to memory when event occurs
};
u32 data_hi;
template <typename T>
T* Address() const {
return reinterpret_cast<T*>(address_lo | u64(address_hi) << 32);
}
u32 DataDWord() const {
return data_lo;
}
u64 DataQWord() const {
return data_lo | u64(data_hi) << 32;
}
void SignalFence(Platform::InterruptId irq_id) const {
switch (data_sel.Value()) {
case DataSelect::Data32Low: {
*Address<u32>() = DataDWord();
break;
}
case DataSelect::Data64: {
*Address<u64>() = DataQWord();
break;
}
case DataSelect::GpuClock64: {
*Address<u64>() = GetGpuClock64();
break;
}
case DataSelect::PerfCounter: {
*Address<u64>() = Common::FencedRDTSC();
break;
}
default: {
UNREACHABLE();
}
}
switch (int_sel.Value()) {
case InterruptSelect::None: {
// No interrupt
break;
}
case InterruptSelect::IrqUndocumented:
[[fallthrough]];
case InterruptSelect::IrqWhenWriteConfirm: {
Platform::IrqC::Instance()->Signal(irq_id);
break;
}
default: {
UNREACHABLE();
}
}
}
};
} // namespace AmdGpu