shadPS4/src/shader_recompiler/frontend/translate/vector_alu.cpp

950 lines
33 KiB
C++

// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "shader_recompiler/frontend/translate/translate.h"
namespace Shader::Gcn {
void Translator::EmitVectorAlu(const GcnInst& inst) {
switch (inst.opcode) {
case Opcode::V_LSHLREV_B32:
return V_LSHLREV_B32(inst);
case Opcode::V_LSHL_B32:
return V_LSHL_B32(inst);
case Opcode::V_BFREV_B32:
return V_BFREV_B32(inst);
case Opcode::V_BFE_U32:
return V_BFE_U32(false, inst);
case Opcode::V_BFE_I32:
return V_BFE_U32(true, inst);
case Opcode::V_BFI_B32:
return V_BFI_B32(inst);
case Opcode::V_LSHR_B32:
return V_LSHR_B32(inst);
case Opcode::V_ASHRREV_I32:
return V_ASHRREV_I32(inst);
case Opcode::V_ASHR_I32:
return V_ASHR_I32(inst);
case Opcode::V_LSHRREV_B32:
return V_LSHRREV_B32(inst);
case Opcode::V_NOT_B32:
return V_NOT_B32(inst);
case Opcode::V_AND_B32:
return V_AND_B32(inst);
case Opcode::V_OR_B32:
return V_OR_B32(false, inst);
case Opcode::V_XOR_B32:
return V_OR_B32(true, inst);
case Opcode::V_FFBL_B32:
return V_FFBL_B32(inst);
case Opcode::V_MOV_B32:
return V_MOV(inst);
case Opcode::V_ADD_I32:
return V_ADD_I32(inst);
case Opcode::V_ADDC_U32:
return V_ADDC_U32(inst);
case Opcode::V_CVT_F32_I32:
return V_CVT_F32_I32(inst);
case Opcode::V_CVT_F32_U32:
return V_CVT_F32_U32(inst);
case Opcode::V_CVT_PKRTZ_F16_F32:
return V_CVT_PKRTZ_F16_F32(inst);
case Opcode::V_CVT_F32_F16:
return V_CVT_F32_F16(inst);
case Opcode::V_CVT_F16_F32:
return V_CVT_F16_F32(inst);
case Opcode::V_CVT_F32_UBYTE0:
return V_CVT_F32_UBYTE(0, inst);
case Opcode::V_CVT_F32_UBYTE1:
return V_CVT_F32_UBYTE(1, inst);
case Opcode::V_CVT_F32_UBYTE2:
return V_CVT_F32_UBYTE(2, inst);
case Opcode::V_CVT_F32_UBYTE3:
return V_CVT_F32_UBYTE(3, inst);
case Opcode::V_CVT_OFF_F32_I4:
return V_CVT_OFF_F32_I4(inst);
case Opcode::V_MAD_U64_U32:
return V_MAD_U64_U32(inst);
case Opcode::V_CMP_GE_I32:
return V_CMP_U32(ConditionOp::GE, true, false, inst);
case Opcode::V_CMP_EQ_I32:
return V_CMP_U32(ConditionOp::EQ, true, false, inst);
case Opcode::V_CMP_LE_I32:
return V_CMP_U32(ConditionOp::LE, true, false, inst);
case Opcode::V_CMP_NE_I32:
return V_CMP_U32(ConditionOp::LG, true, false, inst);
case Opcode::V_CMP_NE_U32:
return V_CMP_U32(ConditionOp::LG, false, false, inst);
case Opcode::V_CMP_EQ_U32:
return V_CMP_U32(ConditionOp::EQ, false, false, inst);
case Opcode::V_CMP_F_U32:
return V_CMP_U32(ConditionOp::F, false, false, inst);
case Opcode::V_CMP_LT_U32:
return V_CMP_U32(ConditionOp::LT, false, false, inst);
case Opcode::V_CMP_GT_U32:
return V_CMP_U32(ConditionOp::GT, false, false, inst);
case Opcode::V_CMP_GE_U32:
return V_CMP_U32(ConditionOp::GE, false, false, inst);
case Opcode::V_CMP_TRU_U32:
return V_CMP_U32(ConditionOp::TRU, false, false, inst);
case Opcode::V_CMP_NEQ_F32:
return V_CMP_F32(ConditionOp::LG, false, inst);
case Opcode::V_CMP_F_F32:
return V_CMP_F32(ConditionOp::F, false, inst);
case Opcode::V_CMP_LT_F32:
return V_CMP_F32(ConditionOp::LT, false, inst);
case Opcode::V_CMP_EQ_F32:
return V_CMP_F32(ConditionOp::EQ, false, inst);
case Opcode::V_CMP_LE_F32:
return V_CMP_F32(ConditionOp::LE, false, inst);
case Opcode::V_CMP_GT_F32:
return V_CMP_F32(ConditionOp::GT, false, inst);
case Opcode::V_CMP_LG_F32:
return V_CMP_F32(ConditionOp::LG, false, inst);
case Opcode::V_CMP_GE_F32:
return V_CMP_F32(ConditionOp::GE, false, inst);
case Opcode::V_CMP_NLE_F32:
return V_CMP_F32(ConditionOp::GT, false, inst);
case Opcode::V_CMP_NLT_F32:
return V_CMP_F32(ConditionOp::GE, false, inst);
case Opcode::V_CMP_NGT_F32:
return V_CMP_F32(ConditionOp::LE, false, inst);
case Opcode::V_CMP_NGE_F32:
return V_CMP_F32(ConditionOp::LT, false, inst);
case Opcode::V_CMP_U_F32:
return V_CMP_F32(ConditionOp::U, false, inst);
case Opcode::V_CNDMASK_B32:
return V_CNDMASK_B32(inst);
case Opcode::V_MAX_I32:
return V_MAX_U32(true, inst);
case Opcode::V_MAX_U32:
return V_MAX_U32(false, inst);
case Opcode::V_MIN_I32:
return V_MIN_I32(inst);
case Opcode::V_CUBEMA_F32:
return V_CUBEMA_F32(inst);
case Opcode::V_CUBESC_F32:
return V_CUBESC_F32(inst);
case Opcode::V_CUBETC_F32:
return V_CUBETC_F32(inst);
case Opcode::V_CUBEID_F32:
return V_CUBEID_F32(inst);
case Opcode::V_CVT_U32_F32:
return V_CVT_U32_F32(inst);
case Opcode::V_CVT_I32_F32:
return V_CVT_I32_F32(inst);
case Opcode::V_CVT_FLR_I32_F32:
return V_CVT_FLR_I32_F32(inst);
case Opcode::V_SUBREV_I32:
return V_SUBREV_I32(inst);
case Opcode::V_MUL_HI_U32:
return V_MUL_HI_U32(false, inst);
case Opcode::V_MUL_LO_I32:
return V_MUL_LO_U32(inst);
case Opcode::V_SAD_U32:
return V_SAD_U32(inst);
case Opcode::V_SUB_I32:
return V_SUB_I32(inst);
case Opcode::V_MAD_I32_I24:
return V_MAD_I32_I24(inst);
case Opcode::V_MUL_I32_I24:
case Opcode::V_MUL_U32_U24:
return V_MUL_I32_I24(inst);
case Opcode::V_MAD_U32_U24:
return V_MAD_U32_U24(inst);
case Opcode::V_BCNT_U32_B32:
return V_BCNT_U32_B32(inst);
case Opcode::V_MUL_LO_U32:
return V_MUL_LO_U32(inst);
case Opcode::V_MIN_U32:
return V_MIN_U32(inst);
case Opcode::V_CMP_NE_U64:
return V_CMP_NE_U64(inst);
case Opcode::V_READFIRSTLANE_B32:
return V_READFIRSTLANE_B32(inst);
case Opcode::V_READLANE_B32:
return V_READLANE_B32(inst);
case Opcode::V_WRITELANE_B32:
return V_WRITELANE_B32(inst);
case Opcode::V_MAD_F32:
return V_MAD_F32(inst);
case Opcode::V_MAC_F32:
return V_MAC_F32(inst);
case Opcode::V_MUL_F32:
return V_MUL_F32(inst);
case Opcode::V_RCP_F32:
return V_RCP_F32(inst);
case Opcode::V_LDEXP_F32:
return V_LDEXP_F32(inst);
case Opcode::V_FRACT_F32:
return V_FRACT_F32(inst);
case Opcode::V_ADD_F32:
return V_ADD_F32(inst);
case Opcode::V_MED3_F32:
return V_MED3_F32(inst);
case Opcode::V_MED3_I32:
return V_MED3_I32(inst);
case Opcode::V_FLOOR_F32:
return V_FLOOR_F32(inst);
case Opcode::V_SUB_F32:
return V_SUB_F32(inst);
case Opcode::V_FMA_F32:
case Opcode::V_MADAK_F32:
return V_FMA_F32(inst);
case Opcode::V_MAX_F32:
return V_MAX_F32(inst);
case Opcode::V_RSQ_F32:
return V_RSQ_F32(inst);
case Opcode::V_SIN_F32:
return V_SIN_F32(inst);
case Opcode::V_COS_F32:
return V_COS_F32(inst);
case Opcode::V_LOG_F32:
return V_LOG_F32(inst);
case Opcode::V_EXP_F32:
return V_EXP_F32(inst);
case Opcode::V_SQRT_F32:
return V_SQRT_F32(inst);
case Opcode::V_MIN_F32:
return V_MIN_F32(inst, false);
case Opcode::V_MIN3_F32:
return V_MIN3_F32(inst);
case Opcode::V_MIN3_I32:
return V_MIN3_I32(inst);
case Opcode::V_MIN_LEGACY_F32:
return V_MIN_F32(inst, true);
case Opcode::V_MADMK_F32:
return V_MADMK_F32(inst);
case Opcode::V_SUBREV_F32:
return V_SUBREV_F32(inst);
case Opcode::V_RNDNE_F32:
return V_RNDNE_F32(inst);
case Opcode::V_MAX3_F32:
return V_MAX3_F32(inst);
case Opcode::V_MAX3_U32:
return V_MAX3_U32(inst);
case Opcode::V_TRUNC_F32:
return V_TRUNC_F32(inst);
case Opcode::V_CEIL_F32:
return V_CEIL_F32(inst);
case Opcode::V_MUL_LEGACY_F32:
return V_MUL_F32(inst);
case Opcode::V_MAC_LEGACY_F32:
return V_MAC_F32(inst);
case Opcode::V_MAD_LEGACY_F32:
return V_MAD_F32(inst);
case Opcode::V_MAX_LEGACY_F32:
return V_MAX_F32(inst, true);
case Opcode::V_RSQ_LEGACY_F32:
case Opcode::V_RSQ_CLAMP_F32:
return V_RSQ_F32(inst);
case Opcode::V_RCP_IFLAG_F32:
return V_RCP_F32(inst);
case Opcode::V_CMPX_F_F32:
return V_CMP_F32(ConditionOp::F, true, inst);
case Opcode::V_CMPX_LT_F32:
return V_CMP_F32(ConditionOp::LT, true, inst);
case Opcode::V_CMPX_EQ_F32:
return V_CMP_F32(ConditionOp::EQ, true, inst);
case Opcode::V_CMPX_LE_F32:
return V_CMP_F32(ConditionOp::LE, true, inst);
case Opcode::V_CMPX_GT_F32:
return V_CMP_F32(ConditionOp::GT, true, inst);
case Opcode::V_CMPX_LG_F32:
return V_CMP_F32(ConditionOp::LG, true, inst);
case Opcode::V_CMPX_GE_F32:
return V_CMP_F32(ConditionOp::GE, true, inst);
case Opcode::V_CMPX_NGE_F32:
return V_CMP_F32(ConditionOp::LT, true, inst);
case Opcode::V_CMPX_NLG_F32:
return V_CMP_F32(ConditionOp::EQ, true, inst);
case Opcode::V_CMPX_NGT_F32:
return V_CMP_F32(ConditionOp::LE, true, inst);
case Opcode::V_CMPX_NLE_F32:
return V_CMP_F32(ConditionOp::GT, true, inst);
case Opcode::V_CMPX_NEQ_F32:
return V_CMP_F32(ConditionOp::LG, true, inst);
case Opcode::V_CMPX_NLT_F32:
return V_CMP_F32(ConditionOp::GE, true, inst);
case Opcode::V_CMPX_TRU_F32:
return V_CMP_F32(ConditionOp::TRU, true, inst);
case Opcode::V_CMP_CLASS_F32:
return V_CMP_CLASS_F32(inst);
case Opcode::V_CMP_LE_U32:
return V_CMP_U32(ConditionOp::LE, false, false, inst);
case Opcode::V_CMP_GT_I32:
return V_CMP_U32(ConditionOp::GT, true, false, inst);
case Opcode::V_CMP_LT_I32:
return V_CMP_U32(ConditionOp::LT, true, false, inst);
case Opcode::V_CMPX_GT_I32:
return V_CMP_U32(ConditionOp::GT, true, true, inst);
case Opcode::V_CMPX_LT_I32:
return V_CMP_U32(ConditionOp::LT, true, true, inst);
case Opcode::V_CMPX_F_U32:
return V_CMP_U32(ConditionOp::F, false, true, inst);
case Opcode::V_CMPX_LT_U32:
return V_CMP_U32(ConditionOp::LT, false, true, inst);
case Opcode::V_CMPX_EQ_U32:
return V_CMP_U32(ConditionOp::EQ, false, true, inst);
case Opcode::V_CMPX_LE_U32:
return V_CMP_U32(ConditionOp::LE, false, true, inst);
case Opcode::V_CMPX_GT_U32:
return V_CMP_U32(ConditionOp::GT, false, true, inst);
case Opcode::V_CMPX_NE_U32:
return V_CMP_U32(ConditionOp::LG, false, true, inst);
case Opcode::V_CMPX_GE_U32:
return V_CMP_U32(ConditionOp::GE, false, true, inst);
case Opcode::V_CMPX_TRU_U32:
return V_CMP_U32(ConditionOp::TRU, false, true, inst);
case Opcode::V_CMPX_LG_I32:
return V_CMP_U32(ConditionOp::LG, true, true, inst);
case Opcode::V_MBCNT_LO_U32_B32:
return V_MBCNT_U32_B32(true, inst);
case Opcode::V_MBCNT_HI_U32_B32:
return V_MBCNT_U32_B32(false, inst);
case Opcode::V_NOP:
return;
default:
LogMissingOpcode(inst);
}
}
void Translator::V_MOV(const GcnInst& inst) {
SetDst(inst.dst[0], GetSrc<IR::F32>(inst.src[0]));
}
void Translator::V_SAD(const GcnInst& inst) {
const IR::U32 abs_diff = ir.IAbs(ir.ISub(GetSrc(inst.src[0]), GetSrc(inst.src[1])));
SetDst(inst.dst[0], ir.IAdd(abs_diff, GetSrc(inst.src[2])));
}
void Translator::V_MAC_F32(const GcnInst& inst) {
SetDst(inst.dst[0], ir.FPFma(GetSrc<IR::F32>(inst.src[0]), GetSrc<IR::F32>(inst.src[1]),
GetSrc<IR::F32>(inst.dst[0])));
}
void Translator::V_CVT_PKRTZ_F16_F32(const GcnInst& inst) {
const IR::VectorReg dst_reg{inst.dst[0].code};
const IR::Value vec_f32 =
ir.CompositeConstruct(GetSrc<IR::F32>(inst.src[0]), GetSrc<IR::F32>(inst.src[1]));
ir.SetVectorReg(dst_reg, ir.PackHalf2x16(vec_f32));
}
void Translator::V_CVT_F32_F16(const GcnInst& inst) {
const IR::U32 src0 = GetSrc(inst.src[0]);
const IR::U16 src0l = ir.UConvert(16, src0);
SetDst(inst.dst[0], ir.FPConvert(32, ir.BitCast<IR::F16>(src0l)));
}
void Translator::V_CVT_F16_F32(const GcnInst& inst) {
const IR::F32 src0 = GetSrc<IR::F32>(inst.src[0]);
const IR::F16 src0fp16 = ir.FPConvert(16, src0);
SetDst(inst.dst[0], ir.UConvert(32, ir.BitCast<IR::U16>(src0fp16)));
}
void Translator::V_MUL_F32(const GcnInst& inst) {
SetDst(inst.dst[0], ir.FPMul(GetSrc<IR::F32>(inst.src[0]), GetSrc<IR::F32>(inst.src[1])));
}
void Translator::V_CNDMASK_B32(const GcnInst& inst) {
const IR::VectorReg dst_reg{inst.dst[0].code};
const IR::ScalarReg flag_reg{inst.src[2].code};
const IR::U1 flag = inst.src[2].field == OperandField::ScalarGPR
? ir.GetThreadBitScalarReg(flag_reg)
: ir.GetVcc();
const IR::Value result =
ir.Select(flag, GetSrc<IR::F32>(inst.src[1]), GetSrc<IR::F32>(inst.src[0]));
ir.SetVectorReg(dst_reg, IR::U32F32{result});
}
void Translator::V_OR_B32(bool is_xor, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{ir.GetVectorReg(IR::VectorReg(inst.src[1].code))};
const IR::VectorReg dst_reg{inst.dst[0].code};
ir.SetVectorReg(dst_reg,
is_xor ? ir.BitwiseXor(src0, src1) : IR::U32(ir.BitwiseOr(src0, src1)));
}
void Translator::V_AND_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{ir.GetVectorReg(IR::VectorReg(inst.src[1].code))};
const IR::VectorReg dst_reg{inst.dst[0].code};
ir.SetVectorReg(dst_reg, ir.BitwiseAnd(src0, src1));
}
void Translator::V_LSHLREV_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::VectorReg dst_reg{inst.dst[0].code};
ir.SetVectorReg(dst_reg, ir.ShiftLeftLogical(src1, ir.BitwiseAnd(src0, ir.Imm32(0x1F))));
}
void Translator::V_LSHL_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.ShiftLeftLogical(src0, ir.BitwiseAnd(src1, ir.Imm32(0x1F))));
}
void Translator::V_ADD_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{ir.GetVectorReg(IR::VectorReg(inst.src[1].code))};
const IR::VectorReg dst_reg{inst.dst[0].code};
ir.SetVectorReg(dst_reg, ir.IAdd(src0, src1));
// TODO: Carry
}
void Translator::V_ADDC_U32(const GcnInst& inst) {
const auto src0 = GetSrc<IR::U32>(inst.src[0]);
const auto src1 = GetSrc<IR::U32>(inst.src[1]);
IR::U32 scarry;
if (inst.src_count == 3) { // VOP3
IR::U1 thread_bit{ir.GetThreadBitScalarReg(IR::ScalarReg(inst.src[2].code))};
scarry = IR::U32{ir.Select(thread_bit, ir.Imm32(1), ir.Imm32(0))};
} else { // VOP2
scarry = ir.GetVccLo();
}
const IR::U32 result = ir.IAdd(ir.IAdd(src0, src1), scarry);
const IR::VectorReg dst_reg{inst.dst[0].code};
ir.SetVectorReg(dst_reg, result);
const IR::U1 less_src0 = ir.ILessThan(result, src0, false);
const IR::U1 less_src1 = ir.ILessThan(result, src1, false);
const IR::U1 did_overflow = ir.LogicalOr(less_src0, less_src1);
ir.SetVcc(did_overflow);
}
void Translator::V_CVT_F32_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::VectorReg dst_reg{inst.dst[0].code};
ir.SetVectorReg(dst_reg, ir.ConvertSToF(32, 32, src0));
}
void Translator::V_CVT_F32_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::VectorReg dst_reg{inst.dst[0].code};
ir.SetVectorReg(dst_reg, ir.ConvertUToF(32, 32, src0));
}
void Translator::V_MAD_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
const IR::F32 src2{GetSrc<IR::F32>(inst.src[2])};
SetDst(inst.dst[0], ir.FPFma(src0, src1, src2));
}
void Translator::V_FRACT_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::VectorReg dst_reg{inst.dst[0].code};
ir.SetVectorReg(dst_reg, ir.Fract(src0));
}
void Translator::V_ADD_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
SetDst(inst.dst[0], ir.FPAdd(src0, src1));
}
void Translator::V_CVT_OFF_F32_I4(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::VectorReg dst_reg{inst.dst[0].code};
ir.SetVectorReg(
dst_reg,
ir.FPMul(ir.ConvertUToF(32, 32, ir.ISub(ir.BitwiseAnd(src0, ir.Imm32(0xF)), ir.Imm32(8))),
ir.Imm32(1.f / 16.f)));
}
void Translator::V_MED3_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
const IR::F32 src2{GetSrc<IR::F32>(inst.src[2])};
const IR::F32 mmx = ir.FPMin(ir.FPMax(src0, src1), src2);
SetDst(inst.dst[0], ir.FPMax(ir.FPMin(src0, src1), mmx));
}
void Translator::V_MED3_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 src2{GetSrc(inst.src[2])};
const IR::U32 mmx = ir.SMin(ir.SMax(src0, src1), src2);
SetDst(inst.dst[0], ir.SMax(ir.SMin(src0, src1), mmx));
}
void Translator::V_FLOOR_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::VectorReg dst_reg{inst.dst[0].code};
ir.SetVectorReg(dst_reg, ir.FPFloor(src0));
}
void Translator::V_SUB_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
SetDst(inst.dst[0], ir.FPSub(src0, src1));
}
void Translator::V_RCP_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPRecip(src0));
}
void Translator::V_FMA_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
const IR::F32 src2{GetSrc<IR::F32>(inst.src[2])};
SetDst(inst.dst[0], ir.FPFma(src0, src1, src2));
}
void Translator::V_CMP_F32(ConditionOp op, bool set_exec, const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
const IR::U1 result = [&] {
switch (op) {
case ConditionOp::F:
return ir.Imm1(false);
case ConditionOp::EQ:
return ir.FPEqual(src0, src1);
case ConditionOp::LG:
return ir.FPNotEqual(src0, src1);
case ConditionOp::GT:
return ir.FPGreaterThan(src0, src1);
case ConditionOp::LT:
return ir.FPLessThan(src0, src1);
case ConditionOp::LE:
return ir.FPLessThanEqual(src0, src1);
case ConditionOp::GE:
return ir.FPGreaterThanEqual(src0, src1);
case ConditionOp::U:
return ir.LogicalNot(ir.LogicalAnd(ir.FPIsNan(src0), ir.FPIsNan(src1)));
default:
UNREACHABLE();
}
}();
if (set_exec) {
ir.SetExec(result);
}
switch (inst.dst[1].field) {
case OperandField::VccLo:
ir.SetVcc(result);
break;
case OperandField::ScalarGPR:
ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[1].code), result);
break;
default:
UNREACHABLE();
}
}
void Translator::V_MAX_F32(const GcnInst& inst, bool is_legacy) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
SetDst(inst.dst[0], ir.FPMax(src0, src1, is_legacy));
}
void Translator::V_MAX_U32(bool is_signed, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.IMax(src0, src1, is_signed));
}
void Translator::V_RSQ_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPRecipSqrt(src0));
}
void Translator::V_SIN_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPSin(src0));
}
void Translator::V_LOG_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPLog2(src0));
}
void Translator::V_EXP_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPExp2(src0));
}
void Translator::V_SQRT_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPSqrt(src0));
}
void Translator::V_MIN_F32(const GcnInst& inst, bool is_legacy) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
SetDst(inst.dst[0], ir.FPMin(src0, src1, is_legacy));
}
void Translator::V_MIN3_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
const IR::F32 src2{GetSrc<IR::F32>(inst.src[2])};
SetDst(inst.dst[0], ir.FPMin(src0, ir.FPMin(src1, src2)));
}
void Translator::V_MIN3_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 src2{GetSrc(inst.src[2])};
SetDst(inst.dst[0], ir.SMin(src0, ir.SMin(src1, src2)));
}
void Translator::V_MADMK_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
const IR::F32 k{GetSrc<IR::F32>(inst.src[2])};
SetDst(inst.dst[0], ir.FPFma(src0, k, src1));
}
void Translator::V_CUBEMA_F32(const GcnInst& inst) {
SetDst(inst.dst[0], ir.Imm32(1.f));
}
void Translator::V_CUBESC_F32(const GcnInst& inst) {
SetDst(inst.dst[0], GetSrc<IR::F32>(inst.src[0]));
}
void Translator::V_CUBETC_F32(const GcnInst& inst) {
SetDst(inst.dst[0], GetSrc<IR::F32>(inst.src[1]));
}
void Translator::V_CUBEID_F32(const GcnInst& inst) {
SetDst(inst.dst[0], GetSrc<IR::F32>(inst.src[2]));
}
void Translator::V_CVT_U32_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.ConvertFToU(32, src0));
}
void Translator::V_SUBREV_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
SetDst(inst.dst[0], ir.FPSub(src1, src0));
}
void Translator::V_SUBREV_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.ISub(src1, src0));
// TODO: Carry-out
}
void Translator::V_MAD_U64_U32(const GcnInst& inst) {
const auto src0 = GetSrc<IR::U32>(inst.src[0]);
const auto src1 = GetSrc<IR::U32>(inst.src[1]);
const auto src2 = GetSrc64<IR::U64>(inst.src[2]);
// const IR::U64 mul_result = ir.UConvert(64, ir.IMul(src0, src1));
const IR::U64 mul_result =
ir.PackUint2x32(ir.CompositeConstruct(ir.IMul(src0, src1), ir.Imm32(0U)));
const IR::U64 sum_result = ir.IAdd(mul_result, src2);
SetDst64(inst.dst[0], sum_result);
const IR::U1 less_src0 = ir.ILessThan(sum_result, mul_result, false);
const IR::U1 less_src1 = ir.ILessThan(sum_result, src2, false);
const IR::U1 did_overflow = ir.LogicalOr(less_src0, less_src1);
ir.SetVcc(did_overflow);
}
void Translator::V_CMP_U32(ConditionOp op, bool is_signed, bool set_exec, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U1 result = [&] {
switch (op) {
case ConditionOp::F:
return ir.Imm1(false);
case ConditionOp::TRU:
return ir.Imm1(true);
case ConditionOp::EQ:
return ir.IEqual(src0, src1);
case ConditionOp::LG:
return ir.INotEqual(src0, src1);
case ConditionOp::GT:
return ir.IGreaterThan(src0, src1, is_signed);
case ConditionOp::LT:
return ir.ILessThan(src0, src1, is_signed);
case ConditionOp::LE:
return ir.ILessThanEqual(src0, src1, is_signed);
case ConditionOp::GE:
return ir.IGreaterThanEqual(src0, src1, is_signed);
default:
UNREACHABLE();
}
}();
if (set_exec) {
ir.SetExec(result);
}
switch (inst.dst[1].field) {
case OperandField::VccLo:
return ir.SetVcc(result);
case OperandField::ScalarGPR:
return ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[0].code), result);
default:
UNREACHABLE();
}
}
void Translator::V_LSHRREV_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.ShiftRightLogical(src1, ir.BitwiseAnd(src0, ir.Imm32(0x1F))));
}
void Translator::V_MUL_HI_U32(bool is_signed, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 hi{ir.CompositeExtract(ir.IMulExt(src0, src1, is_signed), 1)};
SetDst(inst.dst[0], hi);
}
void Translator::V_SAD_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 src2{GetSrc(inst.src[2])};
IR::U32 result;
if (src0.IsImmediate() && src0.U32() == 0U) {
result = src1;
} else if (src1.IsImmediate() && src1.U32() == 0U) {
result = src0;
} else {
const IR::U32 max{ir.IMax(src0, src1, false)};
const IR::U32 min{ir.IMin(src0, src1, false)};
result = ir.ISub(max, min);
}
SetDst(inst.dst[0], ir.IAdd(result, src2));
}
void Translator::V_BFE_U32(bool is_signed, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{ir.BitwiseAnd(GetSrc(inst.src[1]), ir.Imm32(0x1F))};
const IR::U32 src2{ir.BitwiseAnd(GetSrc(inst.src[2]), ir.Imm32(0x1F))};
SetDst(inst.dst[0], ir.BitFieldExtract(src0, src1, src2, is_signed));
}
void Translator::V_MAD_I32_I24(const GcnInst& inst, bool is_signed) {
const IR::U32 src0{
ir.BitFieldExtract(GetSrc(inst.src[0]), ir.Imm32(0), ir.Imm32(24), is_signed)};
const IR::U32 src1{
ir.BitFieldExtract(GetSrc(inst.src[1]), ir.Imm32(0), ir.Imm32(24), is_signed)};
const IR::U32 src2{GetSrc(inst.src[2])};
SetDst(inst.dst[0], ir.IAdd(ir.IMul(src0, src1), src2));
}
void Translator::V_MUL_I32_I24(const GcnInst& inst) {
const IR::U32 src0{ir.BitFieldExtract(GetSrc(inst.src[0]), ir.Imm32(0), ir.Imm32(24), true)};
const IR::U32 src1{ir.BitFieldExtract(GetSrc(inst.src[1]), ir.Imm32(0), ir.Imm32(24), true)};
SetDst(inst.dst[0], ir.IMul(src0, src1));
}
void Translator::V_SUB_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.ISub(src0, src1));
}
void Translator::V_LSHR_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.ShiftRightLogical(src0, ir.BitwiseAnd(src1, ir.Imm32(0x1F))));
}
void Translator::V_ASHRREV_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.ShiftRightArithmetic(src1, ir.BitwiseAnd(src0, ir.Imm32(0x1F))));
}
void Translator::V_ASHR_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.ShiftRightArithmetic(src0, ir.BitwiseAnd(src1, ir.Imm32(0x1F))));
}
void Translator::V_MAD_U32_U24(const GcnInst& inst) {
V_MAD_I32_I24(inst, false);
}
void Translator::V_RNDNE_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPRoundEven(src0));
}
void Translator::V_BCNT_U32_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.IAdd(ir.BitCount(src0), src1));
}
void Translator::V_COS_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPCos(src0));
}
void Translator::V_MAX3_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::F32 src1{GetSrc<IR::F32>(inst.src[1])};
const IR::F32 src2{GetSrc<IR::F32>(inst.src[2])};
SetDst(inst.dst[0], ir.FPMax(src0, ir.FPMax(src1, src2)));
}
void Translator::V_MAX3_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 src2{GetSrc(inst.src[2])};
SetDst(inst.dst[0], ir.UMax(src0, ir.UMax(src1, src2)));
}
void Translator::V_CVT_I32_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.ConvertFToS(32, src0));
}
void Translator::V_MIN_I32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.SMin(src0, src1));
}
void Translator::V_MUL_LO_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.IMul(src0, src1));
}
void Translator::V_TRUNC_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPTrunc(src0));
}
void Translator::V_CEIL_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.FPCeil(src0));
}
void Translator::V_MIN_U32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.IMin(src0, src1, false));
}
void Translator::V_CMP_NE_U64(const GcnInst& inst) {
const auto get_src = [&](const InstOperand& operand) {
switch (operand.field) {
case OperandField::VccLo:
return ir.GetVcc();
case OperandField::ExecLo:
return ir.GetExec();
case OperandField::ScalarGPR:
return ir.GetThreadBitScalarReg(IR::ScalarReg(operand.code));
case OperandField::ConstZero:
return ir.Imm1(false);
default:
UNREACHABLE();
}
};
const IR::U1 src0{get_src(inst.src[0])};
ASSERT(inst.src[1].field == OperandField::ConstZero); // src0 != 0
switch (inst.dst[1].field) {
case OperandField::VccLo:
ir.SetVcc(src0);
break;
case OperandField::ScalarGPR:
ir.SetThreadBitScalarReg(IR::ScalarReg(inst.dst[1].code), src0);
break;
default:
UNREACHABLE();
}
}
void Translator::V_BFI_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
const IR::U32 src2{GetSrc(inst.src[2])};
SetDst(inst.dst[0],
ir.BitwiseOr(ir.BitwiseAnd(src0, src1), ir.BitwiseAnd(ir.BitwiseNot(src0), src2)));
}
void Translator::V_NOT_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
SetDst(inst.dst[0], ir.BitwiseNot(src0));
}
void Translator::V_CVT_F32_UBYTE(u32 index, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 byte = ir.BitFieldExtract(src0, ir.Imm32(8 * index), ir.Imm32(8));
SetDst(inst.dst[0], ir.ConvertUToF(32, 32, byte));
}
void Translator::V_BFREV_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
SetDst(inst.dst[0], ir.BitReverse(src0));
}
void Translator::V_LDEXP_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
SetDst(inst.dst[0], ir.FPLdexp(src0, src1));
}
void Translator::V_CVT_FLR_I32_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
SetDst(inst.dst[0], ir.ConvertFToI(32, true, ir.FPFloor(src0)));
}
void Translator::V_CMP_CLASS_F32(const GcnInst& inst) {
const IR::F32 src0{GetSrc<IR::F32>(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
IR::U1 value;
if (src1.IsImmediate()) {
const auto class_mask = static_cast<IR::FloatClassFunc>(src1.U32());
if ((class_mask & IR::FloatClassFunc::NaN) == IR::FloatClassFunc::NaN) {
value = ir.FPIsNan(src0);
} else if ((class_mask & IR::FloatClassFunc::Infinity) == IR::FloatClassFunc::Infinity) {
value = ir.FPIsInf(src0);
} else {
UNREACHABLE();
}
} else {
// We don't know the type yet, delay its resolution.
value = ir.FPCmpClass32(src0, src1);
}
switch (inst.dst[1].field) {
case OperandField::VccLo:
return ir.SetVcc(value);
default:
UNREACHABLE();
}
}
void Translator::V_FFBL_B32(const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
SetDst(inst.dst[0], ir.FindILsb(src0));
}
void Translator::V_MBCNT_U32_B32(bool is_low, const GcnInst& inst) {
const IR::U32 src0{GetSrc(inst.src[0])};
const IR::U32 src1{GetSrc(inst.src[1])};
if (!is_low) {
ASSERT(src0.IsImmediate() && src0.U32() == ~0U && src1.IsImmediate() && src1.U32() == 0U);
return;
}
ASSERT(src0.IsImmediate() && src0.U32() == ~0U);
SetDst(inst.dst[0], ir.LaneId());
}
} // namespace Shader::Gcn