// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include #include "shader_recompiler/exception.h" #include "shader_recompiler/ir/ir_emitter.h" #include "shader_recompiler/ir/value.h" namespace Shader::IR { namespace { [[noreturn]] void ThrowInvalidType(Type type) { throw InvalidArgument("Invalid type {}", u32(type)); } Value MakeLodClampPair(IREmitter& ir, const F32& bias_lod, const F32& lod_clamp) { if (!bias_lod.IsEmpty() && !lod_clamp.IsEmpty()) { return ir.CompositeConstruct(bias_lod, lod_clamp); } else if (!bias_lod.IsEmpty()) { return bias_lod; } else if (!lod_clamp.IsEmpty()) { return lod_clamp; } else { return Value{}; } } } // Anonymous namespace U1 IREmitter::Imm1(bool value) const { return U1{Value{value}}; } U8 IREmitter::Imm8(u8 value) const { return U8{Value{value}}; } U16 IREmitter::Imm16(u16 value) const { return U16{Value{value}}; } U32 IREmitter::Imm32(u32 value) const { return U32{Value{value}}; } U32 IREmitter::Imm32(s32 value) const { return U32{Value{static_cast(value)}}; } F32 IREmitter::Imm32(f32 value) const { return F32{Value{value}}; } U64 IREmitter::Imm64(u64 value) const { return U64{Value{value}}; } U64 IREmitter::Imm64(s64 value) const { return U64{Value{static_cast(value)}}; } F64 IREmitter::Imm64(f64 value) const { return F64{Value{value}}; } template <> IR::U32 IREmitter::BitCast(const IR::F32& value) { return Inst(Opcode::BitCastU32F32, value); } template <> IR::F32 IREmitter::BitCast(const IR::U32& value) { return Inst(Opcode::BitCastF32U32, value); } template <> IR::U16 IREmitter::BitCast(const IR::F16& value) { return Inst(Opcode::BitCastU16F16, value); } template <> IR::F16 IREmitter::BitCast(const IR::U16& value) { return Inst(Opcode::BitCastF16U16, value); } template <> IR::U64 IREmitter::BitCast(const IR::F64& value) { return Inst(Opcode::BitCastU64F64, value); } template <> IR::F64 IREmitter::BitCast(const IR::U64& value) { return Inst(Opcode::BitCastF64U64, value); } U1 IREmitter::ConditionRef(const U1& value) { return Inst(Opcode::ConditionRef, value); } void IREmitter::Reference(const Value& value) { Inst(Opcode::Reference, value); } void IREmitter::PhiMove(IR::Inst& phi, const Value& value) { Inst(Opcode::PhiMove, Value{&phi}, value); } void IREmitter::Prologue() { Inst(Opcode::Prologue); } void IREmitter::Epilogue() { Inst(Opcode::Epilogue); } template <> U32 IREmitter::GetScalarReg(IR::ScalarReg reg) { return Inst(Opcode::GetScalarRegister, reg); } template <> F32 IREmitter::GetScalarReg(IR::ScalarReg reg) { return BitCast(GetScalarReg(reg)); } template <> U32 IREmitter::GetVectorReg(IR::VectorReg reg) { return Inst(Opcode::GetVectorRegister, reg); } template <> F32 IREmitter::GetVectorReg(IR::VectorReg reg) { return BitCast(GetVectorReg(reg)); } void IREmitter::SetScalarReg(IR::ScalarReg reg, const U32F32& value) { const U32 value_typed = value.Type() == Type::F32 ? BitCast(F32{value}) : U32{value}; Inst(Opcode::SetScalarRegister, reg, value_typed); } void IREmitter::SetVectorReg(IR::VectorReg reg, const U32F32& value) { const U32 value_typed = value.Type() == Type::F32 ? BitCast(F32{value}) : U32{value}; Inst(Opcode::SetVectorRegister, reg, value_typed); } U1 IREmitter::GetGotoVariable(u32 id) { return Inst(Opcode::GetGotoVariable, id); } U1 IREmitter::Condition(IR::Condition cond) { switch (cond) { case IR::Condition::False: return Imm1(false); case IR::Condition::True: return Imm1(true); case IR::Condition::Scc0: case IR::Condition::Scc1: case IR::Condition::Vccz: case IR::Condition::Vccnz: case IR::Condition::Execz: case IR::Condition::Execnz: default: throw NotImplementedException(""); } } void IREmitter::SetGotoVariable(u32 id, const U1& value) { Inst(Opcode::SetGotoVariable, id, value); } U1 IREmitter::GetVcc() { return Inst(Opcode::GetVcc); } void IREmitter::SetVcc(const U1& value) { Inst(Opcode::SetVcc, value); } F32 IREmitter::GetAttribute(IR::Attribute attribute) { return GetAttribute(attribute, 0); } F32 IREmitter::GetAttribute(IR::Attribute attribute, u32 comp) { return Inst(Opcode::GetAttribute, attribute, Imm32(comp)); } U32 IREmitter::GetAttributeU32(IR::Attribute attribute) { return GetAttributeU32(attribute, 0); } U32 IREmitter::GetAttributeU32(IR::Attribute attribute, u32 comp) { return Inst(Opcode::GetAttributeU32, attribute, Imm32(comp)); } void IREmitter::SetAttribute(IR::Attribute attribute, const F32& value, u32 comp) { Inst(Opcode::SetAttribute, attribute, value, Imm32(comp)); } U32U64 IREmitter::ReadShared(int bit_size, bool is_signed, const U32& offset) { /*switch (bit_size) { case 8: return Inst(is_signed ? Opcode::ReadSharedS8 : Opcode::ReadSharedU8, offset); case 16: return Inst(is_signed ? Opcode::ReadSharedS16 : Opcode::ReadSharedU16, offset); case 32: return Inst(Opcode::ReadSharedU32, offset); case 64: return Inst(Opcode::ReadSharedU64, offset); } throw InvalidArgument("Invalid bit size {}", bit_size);*/ } void IREmitter::WriteShared(int bit_size, const Value& value, const U32& offset) { /*switch (bit_size) { case 8: Inst(Opcode::WriteSharedU8, offset, value); break; case 16: Inst(Opcode::WriteSharedU16, offset, value); break; case 32: Inst(Opcode::WriteSharedU32, offset, value); break; case 64: Inst(Opcode::WriteSharedU64, offset, value); break; default: throw InvalidArgument("Invalid bit size {}", bit_size); }*/ } U32 IREmitter::ReadConst(const U64& address, const U32& offset) { return Inst(Opcode::ReadConst, address, offset); } template <> U32 IREmitter::ReadConstBuffer(const Value& handle, const U32& index, const U32& offset) { return Inst(Opcode::ReadConstBuffer, handle, index, offset); } template <> F32 IREmitter::ReadConstBuffer(const Value& handle, const U32& index, const U32& offset) { return Inst(Opcode::ReadConstBufferF32, handle, index, offset); } F32F64 IREmitter::FPAdd(const F32F64& a, const F32F64& b) { if (a.Type() != b.Type()) { throw InvalidArgument("Mismatching types {} and {}", a.Type(), b.Type()); } switch (a.Type()) { case Type::F32: return Inst(Opcode::FPAdd32, a, b); case Type::F64: return Inst(Opcode::FPAdd64, a, b); default: ThrowInvalidType(a.Type()); } } Value IREmitter::CompositeConstruct(const Value& e1, const Value& e2) { if (e1.Type() != e2.Type()) { throw InvalidArgument("Mismatching types {} and {}", e1.Type(), e2.Type()); } switch (e1.Type()) { case Type::U32: return Inst(Opcode::CompositeConstructU32x2, e1, e2); case Type::F16: return Inst(Opcode::CompositeConstructF16x2, e1, e2); case Type::F32: return Inst(Opcode::CompositeConstructF32x2, e1, e2); case Type::F64: return Inst(Opcode::CompositeConstructF64x2, e1, e2); default: ThrowInvalidType(e1.Type()); } } Value IREmitter::CompositeConstruct(const Value& e1, const Value& e2, const Value& e3) { if (e1.Type() != e2.Type() || e1.Type() != e3.Type()) { throw InvalidArgument("Mismatching types {}, {}, and {}", e1.Type(), e2.Type(), e3.Type()); } switch (e1.Type()) { case Type::U32: return Inst(Opcode::CompositeConstructU32x3, e1, e2, e3); case Type::F16: return Inst(Opcode::CompositeConstructF16x3, e1, e2, e3); case Type::F32: return Inst(Opcode::CompositeConstructF32x3, e1, e2, e3); case Type::F64: return Inst(Opcode::CompositeConstructF64x3, e1, e2, e3); default: ThrowInvalidType(e1.Type()); } } Value IREmitter::CompositeConstruct(const Value& e1, const Value& e2, const Value& e3, const Value& e4) { if (e1.Type() != e2.Type() || e1.Type() != e3.Type() || e1.Type() != e4.Type()) { throw InvalidArgument("Mismatching types {}, {}, {}, and {}", e1.Type(), e2.Type(), e3.Type(), e4.Type()); } switch (e1.Type()) { case Type::U32: return Inst(Opcode::CompositeConstructU32x4, e1, e2, e3, e4); case Type::F16: return Inst(Opcode::CompositeConstructF16x4, e1, e2, e3, e4); case Type::F32: return Inst(Opcode::CompositeConstructF32x4, e1, e2, e3, e4); case Type::F64: return Inst(Opcode::CompositeConstructF64x4, e1, e2, e3, e4); default: ThrowInvalidType(e1.Type()); } } Value IREmitter::CompositeExtract(const Value& vector, size_t element) { const auto read{[&](Opcode opcode, size_t limit) -> Value { if (element >= limit) { throw InvalidArgument("Out of bounds element {}", element); } return Inst(opcode, vector, Value{static_cast(element)}); }}; switch (vector.Type()) { case Type::U32x2: return read(Opcode::CompositeExtractU32x2, 2); case Type::U32x3: return read(Opcode::CompositeExtractU32x3, 3); case Type::U32x4: return read(Opcode::CompositeExtractU32x4, 4); case Type::F16x2: return read(Opcode::CompositeExtractF16x2, 2); case Type::F16x3: return read(Opcode::CompositeExtractF16x3, 3); case Type::F16x4: return read(Opcode::CompositeExtractF16x4, 4); case Type::F32x2: return read(Opcode::CompositeExtractF32x2, 2); case Type::F32x3: return read(Opcode::CompositeExtractF32x3, 3); case Type::F32x4: return read(Opcode::CompositeExtractF32x4, 4); case Type::F64x2: return read(Opcode::CompositeExtractF64x2, 2); case Type::F64x3: return read(Opcode::CompositeExtractF64x3, 3); case Type::F64x4: return read(Opcode::CompositeExtractF64x4, 4); default: ThrowInvalidType(vector.Type()); } } Value IREmitter::CompositeInsert(const Value& vector, const Value& object, size_t element) { const auto insert{[&](Opcode opcode, size_t limit) { if (element >= limit) { throw InvalidArgument("Out of bounds element {}", element); } return Inst(opcode, vector, object, Value{static_cast(element)}); }}; switch (vector.Type()) { case Type::U32x2: return insert(Opcode::CompositeInsertU32x2, 2); case Type::U32x3: return insert(Opcode::CompositeInsertU32x3, 3); case Type::U32x4: return insert(Opcode::CompositeInsertU32x4, 4); case Type::F16x2: return insert(Opcode::CompositeInsertF16x2, 2); case Type::F16x3: return insert(Opcode::CompositeInsertF16x3, 3); case Type::F16x4: return insert(Opcode::CompositeInsertF16x4, 4); case Type::F32x2: return insert(Opcode::CompositeInsertF32x2, 2); case Type::F32x3: return insert(Opcode::CompositeInsertF32x3, 3); case Type::F32x4: return insert(Opcode::CompositeInsertF32x4, 4); case Type::F64x2: return insert(Opcode::CompositeInsertF64x2, 2); case Type::F64x3: return insert(Opcode::CompositeInsertF64x3, 3); case Type::F64x4: return insert(Opcode::CompositeInsertF64x4, 4); default: ThrowInvalidType(vector.Type()); } } Value IREmitter::Select(const U1& condition, const Value& true_value, const Value& false_value) { if (true_value.Type() != false_value.Type()) { throw InvalidArgument("Mismatching types {} and {}", true_value.Type(), false_value.Type()); } switch (true_value.Type()) { case Type::U1: return Inst(Opcode::SelectU1, condition, true_value, false_value); case Type::U8: return Inst(Opcode::SelectU8, condition, true_value, false_value); case Type::U16: return Inst(Opcode::SelectU16, condition, true_value, false_value); case Type::U32: return Inst(Opcode::SelectU32, condition, true_value, false_value); case Type::U64: return Inst(Opcode::SelectU64, condition, true_value, false_value); case Type::F32: return Inst(Opcode::SelectF32, condition, true_value, false_value); case Type::F64: return Inst(Opcode::SelectF64, condition, true_value, false_value); default: throw InvalidArgument("Invalid type {}", true_value.Type()); } } U64 IREmitter::PackUint2x32(const Value& vector) { return Inst(Opcode::PackUint2x32, vector); } Value IREmitter::UnpackUint2x32(const U64& value) { return Inst(Opcode::UnpackUint2x32, value); } U32 IREmitter::PackFloat2x16(const Value& vector) { return Inst(Opcode::PackFloat2x16, vector); } Value IREmitter::UnpackFloat2x16(const U32& value) { return Inst(Opcode::UnpackFloat2x16, value); } U32 IREmitter::PackHalf2x16(const Value& vector) { return Inst(Opcode::PackHalf2x16, vector); } Value IREmitter::UnpackHalf2x16(const U32& value) { return Inst(Opcode::UnpackHalf2x16, value); } F32F64 IREmitter::FPMul(const F32F64& a, const F32F64& b) { if (a.Type() != b.Type()) { throw InvalidArgument("Mismatching types {} and {}", a.Type(), b.Type()); } switch (a.Type()) { case Type::F32: return Inst(Opcode::FPMul32, a, b); case Type::F64: return Inst(Opcode::FPMul64, a, b); default: ThrowInvalidType(a.Type()); } } F32F64 IREmitter::FPFma(const F32F64& a, const F32F64& b, const F32F64& c) { if (a.Type() != b.Type() || a.Type() != c.Type()) { throw InvalidArgument("Mismatching types {}, {}, and {}", a.Type(), b.Type(), c.Type()); } switch (a.Type()) { case Type::F32: return Inst(Opcode::FPFma32, a, b, c); case Type::F64: return Inst(Opcode::FPFma64, a, b, c); default: ThrowInvalidType(a.Type()); } } F32F64 IREmitter::FPAbs(const F32F64& value) { switch (value.Type()) { case Type::F32: return Inst(Opcode::FPAbs32, value); case Type::F64: return Inst(Opcode::FPAbs64, value); default: ThrowInvalidType(value.Type()); } } F32F64 IREmitter::FPNeg(const F32F64& value) { switch (value.Type()) { case Type::F32: return Inst(Opcode::FPNeg32, value); case Type::F64: return Inst(Opcode::FPNeg64, value); default: ThrowInvalidType(value.Type()); } } F32F64 IREmitter::FPAbsNeg(const F32F64& value, bool abs, bool neg) { F32F64 result{value}; if (abs) { result = FPAbs(result); } if (neg) { result = FPNeg(result); } return result; } F32 IREmitter::FPCos(const F32& value) { return Inst(Opcode::FPCos, value); } F32 IREmitter::FPSin(const F32& value) { return Inst(Opcode::FPSin, value); } F32 IREmitter::FPExp2(const F32& value) { return Inst(Opcode::FPExp2, value); } F32 IREmitter::FPLog2(const F32& value) { return Inst(Opcode::FPLog2, value); } F32F64 IREmitter::FPRecip(const F32F64& value) { switch (value.Type()) { case Type::F32: return Inst(Opcode::FPRecip32, value); case Type::F64: return Inst(Opcode::FPRecip64, value); default: ThrowInvalidType(value.Type()); } } F32F64 IREmitter::FPRecipSqrt(const F32F64& value) { switch (value.Type()) { case Type::F32: return Inst(Opcode::FPRecipSqrt32, value); case Type::F64: return Inst(Opcode::FPRecipSqrt64, value); default: ThrowInvalidType(value.Type()); } } F32 IREmitter::FPSqrt(const F32& value) { return Inst(Opcode::FPSqrt, value); } F32F64 IREmitter::FPSaturate(const F32F64& value) { switch (value.Type()) { case Type::F32: return Inst(Opcode::FPSaturate32, value); case Type::F64: return Inst(Opcode::FPSaturate64, value); default: ThrowInvalidType(value.Type()); } } F32F64 IREmitter::FPClamp(const F32F64& value, const F32F64& min_value, const F32F64& max_value) { if (value.Type() != min_value.Type() || value.Type() != max_value.Type()) { throw InvalidArgument("Mismatching types {}, {}, and {}", value.Type(), min_value.Type(), max_value.Type()); } switch (value.Type()) { case Type::F32: return Inst(Opcode::FPClamp32, value, min_value, max_value); case Type::F64: return Inst(Opcode::FPClamp64, value, min_value, max_value); default: ThrowInvalidType(value.Type()); } } F32F64 IREmitter::FPRoundEven(const F32F64& value) { switch (value.Type()) { case Type::F32: return Inst(Opcode::FPRoundEven32, value); case Type::F64: return Inst(Opcode::FPRoundEven64, value); default: ThrowInvalidType(value.Type()); } } F32F64 IREmitter::FPFloor(const F32F64& value) { switch (value.Type()) { case Type::F32: return Inst(Opcode::FPFloor32, value); case Type::F64: return Inst(Opcode::FPFloor64, value); default: ThrowInvalidType(value.Type()); } } F32F64 IREmitter::FPCeil(const F32F64& value) { switch (value.Type()) { case Type::F32: return Inst(Opcode::FPCeil32, value); case Type::F64: return Inst(Opcode::FPCeil64, value); default: ThrowInvalidType(value.Type()); } } F32F64 IREmitter::FPTrunc(const F32F64& value) { switch (value.Type()) { case Type::F32: return Inst(Opcode::FPTrunc32, value); case Type::F64: return Inst(Opcode::FPTrunc64, value); default: ThrowInvalidType(value.Type()); } } U1 IREmitter::FPEqual(const F32F64& lhs, const F32F64& rhs, bool ordered) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::F32: return Inst(ordered ? Opcode::FPOrdEqual32 : Opcode::FPUnordEqual32, lhs, rhs); case Type::F64: return Inst(ordered ? Opcode::FPOrdEqual64 : Opcode::FPUnordEqual64, lhs, rhs); default: ThrowInvalidType(lhs.Type()); } } U1 IREmitter::FPNotEqual(const F32F64& lhs, const F32F64& rhs, bool ordered) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::F32: return Inst(ordered ? Opcode::FPOrdNotEqual32 : Opcode::FPUnordNotEqual32, lhs, rhs); case Type::F64: return Inst(ordered ? Opcode::FPOrdNotEqual64 : Opcode::FPUnordNotEqual64, lhs, rhs); default: ThrowInvalidType(lhs.Type()); } } U1 IREmitter::FPLessThan(const F32F64& lhs, const F32F64& rhs, bool ordered) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::F32: return Inst(ordered ? Opcode::FPOrdLessThan32 : Opcode::FPUnordLessThan32, lhs, rhs); case Type::F64: return Inst(ordered ? Opcode::FPOrdLessThan64 : Opcode::FPUnordLessThan64, lhs, rhs); default: ThrowInvalidType(lhs.Type()); } } U1 IREmitter::FPGreaterThan(const F32F64& lhs, const F32F64& rhs, bool ordered) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::F32: return Inst(ordered ? Opcode::FPOrdGreaterThan32 : Opcode::FPUnordGreaterThan32, lhs, rhs); case Type::F64: return Inst(ordered ? Opcode::FPOrdGreaterThan64 : Opcode::FPUnordGreaterThan64, lhs, rhs); default: ThrowInvalidType(lhs.Type()); } } U1 IREmitter::FPLessThanEqual(const F32F64& lhs, const F32F64& rhs, bool ordered) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::F32: return Inst(ordered ? Opcode::FPOrdLessThanEqual32 : Opcode::FPUnordLessThanEqual32, lhs, rhs); case Type::F64: return Inst(ordered ? Opcode::FPOrdLessThanEqual64 : Opcode::FPUnordLessThanEqual64, lhs, rhs); default: ThrowInvalidType(lhs.Type()); } } U1 IREmitter::FPGreaterThanEqual(const F32F64& lhs, const F32F64& rhs, bool ordered) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::F32: return Inst(ordered ? Opcode::FPOrdGreaterThanEqual32 : Opcode::FPUnordGreaterThanEqual32, lhs, rhs); case Type::F64: return Inst(ordered ? Opcode::FPOrdGreaterThanEqual64 : Opcode::FPUnordGreaterThanEqual64, lhs, rhs); default: ThrowInvalidType(lhs.Type()); } } U1 IREmitter::FPIsNan(const F32F64& value) { switch (value.Type()) { case Type::F32: return Inst(Opcode::FPIsNan32, value); case Type::F64: return Inst(Opcode::FPIsNan64, value); default: ThrowInvalidType(value.Type()); } } U1 IREmitter::FPOrdered(const F32F64& lhs, const F32F64& rhs) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } return LogicalAnd(LogicalNot(FPIsNan(lhs)), LogicalNot(FPIsNan(rhs))); } U1 IREmitter::FPUnordered(const F32F64& lhs, const F32F64& rhs) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } return LogicalOr(FPIsNan(lhs), FPIsNan(rhs)); } F32F64 IREmitter::FPMax(const F32F64& lhs, const F32F64& rhs) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::F32: return Inst(Opcode::FPMax32, lhs, rhs); case Type::F64: return Inst(Opcode::FPMax64, lhs, rhs); default: ThrowInvalidType(lhs.Type()); } } F32F64 IREmitter::FPMin(const F32F64& lhs, const F32F64& rhs) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::F32: return Inst(Opcode::FPMin32, lhs, rhs); case Type::F64: return Inst(Opcode::FPMin64, lhs, rhs); default: ThrowInvalidType(lhs.Type()); } } U32U64 IREmitter::IAdd(const U32U64& a, const U32U64& b) { if (a.Type() != b.Type()) { throw InvalidArgument("Mismatching types {} and {}", a.Type(), b.Type()); } switch (a.Type()) { case Type::U32: return Inst(Opcode::IAdd32, a, b); case Type::U64: return Inst(Opcode::IAdd64, a, b); default: ThrowInvalidType(a.Type()); } } U32U64 IREmitter::ISub(const U32U64& a, const U32U64& b) { if (a.Type() != b.Type()) { throw InvalidArgument("Mismatching types {} and {}", a.Type(), b.Type()); } switch (a.Type()) { case Type::U32: return Inst(Opcode::ISub32, a, b); case Type::U64: return Inst(Opcode::ISub64, a, b); default: ThrowInvalidType(a.Type()); } } U32 IREmitter::IMul(const U32& a, const U32& b) { return Inst(Opcode::IMul32, a, b); } U32 IREmitter::IDiv(const U32& a, const U32& b, bool is_signed) { return Inst(is_signed ? Opcode::SDiv32 : Opcode::UDiv32, a, b); } U32U64 IREmitter::INeg(const U32U64& value) { switch (value.Type()) { case Type::U32: return Inst(Opcode::INeg32, value); case Type::U64: return Inst(Opcode::INeg64, value); default: ThrowInvalidType(value.Type()); } } U32 IREmitter::IAbs(const U32& value) { return Inst(Opcode::IAbs32, value); } U32U64 IREmitter::ShiftLeftLogical(const U32U64& base, const U32& shift) { switch (base.Type()) { case Type::U32: return Inst(Opcode::ShiftLeftLogical32, base, shift); case Type::U64: return Inst(Opcode::ShiftLeftLogical64, base, shift); default: ThrowInvalidType(base.Type()); } } U32U64 IREmitter::ShiftRightLogical(const U32U64& base, const U32& shift) { switch (base.Type()) { case Type::U32: return Inst(Opcode::ShiftRightLogical32, base, shift); case Type::U64: return Inst(Opcode::ShiftRightLogical64, base, shift); default: ThrowInvalidType(base.Type()); } } U32U64 IREmitter::ShiftRightArithmetic(const U32U64& base, const U32& shift) { switch (base.Type()) { case Type::U32: return Inst(Opcode::ShiftRightArithmetic32, base, shift); case Type::U64: return Inst(Opcode::ShiftRightArithmetic64, base, shift); default: ThrowInvalidType(base.Type()); } } U32 IREmitter::BitwiseAnd(const U32& a, const U32& b) { return Inst(Opcode::BitwiseAnd32, a, b); } U32 IREmitter::BitwiseOr(const U32& a, const U32& b) { return Inst(Opcode::BitwiseOr32, a, b); } U32 IREmitter::BitwiseXor(const U32& a, const U32& b) { return Inst(Opcode::BitwiseXor32, a, b); } U32 IREmitter::BitFieldInsert(const U32& base, const U32& insert, const U32& offset, const U32& count) { return Inst(Opcode::BitFieldInsert, base, insert, offset, count); } U32 IREmitter::BitFieldExtract(const U32& base, const U32& offset, const U32& count, bool is_signed) { return Inst(is_signed ? Opcode::BitFieldSExtract : Opcode::BitFieldUExtract, base, offset, count); } U32 IREmitter::BitReverse(const U32& value) { return Inst(Opcode::BitReverse32, value); } U32 IREmitter::BitCount(const U32& value) { return Inst(Opcode::BitCount32, value); } U32 IREmitter::BitwiseNot(const U32& value) { return Inst(Opcode::BitwiseNot32, value); } U32 IREmitter::FindSMsb(const U32& value) { return Inst(Opcode::FindSMsb32, value); } U32 IREmitter::FindUMsb(const U32& value) { return Inst(Opcode::FindUMsb32, value); } U32 IREmitter::SMin(const U32& a, const U32& b) { return Inst(Opcode::SMin32, a, b); } U32 IREmitter::UMin(const U32& a, const U32& b) { return Inst(Opcode::UMin32, a, b); } U32 IREmitter::IMin(const U32& a, const U32& b, bool is_signed) { return is_signed ? SMin(a, b) : UMin(a, b); } U32 IREmitter::SMax(const U32& a, const U32& b) { return Inst(Opcode::SMax32, a, b); } U32 IREmitter::UMax(const U32& a, const U32& b) { return Inst(Opcode::UMax32, a, b); } U32 IREmitter::IMax(const U32& a, const U32& b, bool is_signed) { return is_signed ? SMax(a, b) : UMax(a, b); } U32 IREmitter::SClamp(const U32& value, const U32& min, const U32& max) { return Inst(Opcode::SClamp32, value, min, max); } U32 IREmitter::UClamp(const U32& value, const U32& min, const U32& max) { return Inst(Opcode::UClamp32, value, min, max); } U1 IREmitter::ILessThan(const U32& lhs, const U32& rhs, bool is_signed) { return Inst(is_signed ? Opcode::SLessThan : Opcode::ULessThan, lhs, rhs); } U1 IREmitter::IEqual(const U32U64& lhs, const U32U64& rhs) { if (lhs.Type() != rhs.Type()) { throw InvalidArgument("Mismatching types {} and {}", lhs.Type(), rhs.Type()); } switch (lhs.Type()) { case Type::U32: return Inst(Opcode::IEqual, lhs, rhs); default: ThrowInvalidType(lhs.Type()); } } U1 IREmitter::ILessThanEqual(const U32& lhs, const U32& rhs, bool is_signed) { return Inst(is_signed ? Opcode::SLessThanEqual : Opcode::ULessThanEqual, lhs, rhs); } U1 IREmitter::IGreaterThan(const U32& lhs, const U32& rhs, bool is_signed) { return Inst(is_signed ? Opcode::SGreaterThan : Opcode::UGreaterThan, lhs, rhs); } U1 IREmitter::INotEqual(const U32& lhs, const U32& rhs) { return Inst(Opcode::INotEqual, lhs, rhs); } U1 IREmitter::IGreaterThanEqual(const U32& lhs, const U32& rhs, bool is_signed) { return Inst(is_signed ? Opcode::SGreaterThanEqual : Opcode::UGreaterThanEqual, lhs, rhs); } U1 IREmitter::LogicalOr(const U1& a, const U1& b) { return Inst(Opcode::LogicalOr, a, b); } U1 IREmitter::LogicalAnd(const U1& a, const U1& b) { return Inst(Opcode::LogicalAnd, a, b); } U1 IREmitter::LogicalXor(const U1& a, const U1& b) { return Inst(Opcode::LogicalXor, a, b); } U1 IREmitter::LogicalNot(const U1& value) { return Inst(Opcode::LogicalNot, value); } U32U64 IREmitter::ConvertFToS(size_t bitsize, const F32F64& value) { switch (bitsize) { case 32: switch (value.Type()) { case Type::F32: return Inst(Opcode::ConvertS32F32, value); case Type::F64: return Inst(Opcode::ConvertS32F64, value); default: ThrowInvalidType(value.Type()); } default: throw InvalidArgument("Invalid destination bitsize {}", bitsize); } } U32U64 IREmitter::ConvertFToU(size_t bitsize, const F32F64& value) { switch (bitsize) { case 32: switch (value.Type()) { case Type::F32: return Inst(Opcode::ConvertU32F32, value); default: ThrowInvalidType(value.Type()); } default: throw InvalidArgument("Invalid destination bitsize {}", bitsize); } } U32U64 IREmitter::ConvertFToI(size_t bitsize, bool is_signed, const F32F64& value) { return is_signed ? ConvertFToS(bitsize, value) : ConvertFToU(bitsize, value); } F32F64 IREmitter::ConvertSToF(size_t dest_bitsize, size_t src_bitsize, const Value& value) { switch (dest_bitsize) { case 32: switch (src_bitsize) { case 32: return Inst(Opcode::ConvertF32S32, value); } break; case 64: switch (src_bitsize) { case 32: return Inst(Opcode::ConvertF64S32, value); } break; } throw InvalidArgument("Invalid bit size combination dst={} src={}", dest_bitsize, src_bitsize); } F32F64 IREmitter::ConvertUToF(size_t dest_bitsize, size_t src_bitsize, const Value& value) { switch (dest_bitsize) { case 32: switch (src_bitsize) { case 32: return Inst(Opcode::ConvertF32U32, value); } break; case 64: switch (src_bitsize) { case 32: return Inst(Opcode::ConvertF64U32, value); } break; } throw InvalidArgument("Invalid bit size combination dst={} src={}", dest_bitsize, src_bitsize); } F32F64 IREmitter::ConvertIToF(size_t dest_bitsize, size_t src_bitsize, bool is_signed, const Value& value) { return is_signed ? ConvertSToF(dest_bitsize, src_bitsize, value) : ConvertUToF(dest_bitsize, src_bitsize, value); } U32U64 IREmitter::UConvert(size_t result_bitsize, const U32U64& value) { throw NotImplementedException("Conversion from {} to {} bits", value.Type(), result_bitsize); } F16F32F64 IREmitter::FPConvert(size_t result_bitsize, const F16F32F64& value) { switch (result_bitsize) { case 16: switch (value.Type()) { case Type::F32: return Inst(Opcode::ConvertF16F32, value); } break; case 32: switch (value.Type()) { case Type::F16: return Inst(Opcode::ConvertF32F16, value); } break; } throw NotImplementedException("Conversion from {} to {} bits", value.Type(), result_bitsize); } Value IREmitter::ImageSampleImplicitLod(const Value& handle, const Value& coords, const F32& bias, const Value& offset, const F32& lod_clamp, TextureInstInfo info) { const Value bias_lc{MakeLodClampPair(*this, bias, lod_clamp)}; return Inst(Opcode::ImageSampleImplicitLod, Flags{info}, handle, coords, bias_lc, offset); } Value IREmitter::ImageSampleExplicitLod(const Value& handle, const Value& coords, const F32& lod, const Value& offset, TextureInstInfo info) { return Inst(Opcode::ImageSampleExplicitLod, Flags{info}, handle, coords, lod, offset); } F32 IREmitter::ImageSampleDrefImplicitLod(const Value& handle, const Value& coords, const F32& dref, const F32& bias, const Value& offset, const F32& lod_clamp, TextureInstInfo info) { const Value bias_lc{MakeLodClampPair(*this, bias, lod_clamp)}; return Inst(Opcode::ImageSampleDrefImplicitLod, Flags{info}, handle, coords, dref, bias_lc, offset); } F32 IREmitter::ImageSampleDrefExplicitLod(const Value& handle, const Value& coords, const F32& dref, const F32& lod, const Value& offset, TextureInstInfo info) { return Inst(Opcode::ImageSampleDrefExplicitLod, Flags{info}, handle, coords, dref, lod, offset); } Value IREmitter::ImageGather(const Value& handle, const Value& coords, const Value& offset, const Value& offset2, TextureInstInfo info) { return Inst(Opcode::ImageGather, Flags{info}, handle, coords, offset, offset2); } Value IREmitter::ImageGatherDref(const Value& handle, const Value& coords, const Value& offset, const Value& offset2, const F32& dref, TextureInstInfo info) { return Inst(Opcode::ImageGatherDref, Flags{info}, handle, coords, offset, offset2, dref); } Value IREmitter::ImageFetch(const Value& handle, const Value& coords, const Value& offset, const U32& lod, const U32& multisampling, TextureInstInfo info) { return Inst(Opcode::ImageFetch, Flags{info}, handle, coords, offset, lod, multisampling); } Value IREmitter::ImageQueryDimension(const Value& handle, const IR::U32& lod, const IR::U1& skip_mips) { return Inst(Opcode::ImageQueryDimensions, handle, lod, skip_mips); } Value IREmitter::ImageQueryDimension(const Value& handle, const IR::U32& lod, const IR::U1& skip_mips, TextureInstInfo info) { return Inst(Opcode::ImageQueryDimensions, Flags{info}, handle, lod, skip_mips); } Value IREmitter::ImageQueryLod(const Value& handle, const Value& coords, TextureInstInfo info) { return Inst(Opcode::ImageQueryLod, Flags{info}, handle, coords); } Value IREmitter::ImageGradient(const Value& handle, const Value& coords, const Value& derivatives, const Value& offset, const F32& lod_clamp, TextureInstInfo info) { return Inst(Opcode::ImageGradient, Flags{info}, handle, coords, derivatives, offset, lod_clamp); } Value IREmitter::ImageRead(const Value& handle, const Value& coords, TextureInstInfo info) { return Inst(Opcode::ImageRead, Flags{info}, handle, coords); } void IREmitter::ImageWrite(const Value& handle, const Value& coords, const Value& color, TextureInstInfo info) { Inst(Opcode::ImageWrite, Flags{info}, handle, coords, color); } } // namespace Shader::IR