Migrate TLS patches to new patching system.

This commit is contained in:
squidbus 2024-07-13 21:38:20 -07:00 committed by TheTurtle
parent 6a6d5bad42
commit d9231b239c
7 changed files with 420 additions and 457 deletions

View File

@ -292,6 +292,8 @@ set(CORE src/core/aerolib/stubs.cpp
src/core/aerolib/aerolib.h
src/core/address_space.cpp
src/core/address_space.h
src/core/cpu_patches.cpp
src/core/cpu_patches.h
src/core/crypto/crypto.cpp
src/core/crypto/crypto.h
src/core/crypto/keys.h
@ -308,8 +310,6 @@ set(CORE src/core/aerolib/stubs.cpp
src/core/file_format/splash.cpp
src/core/file_sys/fs.cpp
src/core/file_sys/fs.h
src/core/instruction_emulator.cpp
src/core/instruction_emulator.h
src/core/loader.cpp
src/core/loader.h
src/core/loader/dwarf.cpp

393
src/core/cpu_patches.cpp Normal file
View File

@ -0,0 +1,393 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <memory>
#include <mutex>
#include <Zydis/Zydis.h>
#include <xbyak/xbyak.h>
#include "common/assert.h"
#include "common/types.h"
#include "core/tls.h"
#include "cpu_patches.h"
#ifdef _WIN32
#include <windows.h>
#else
#include <pthread.h>
#endif
namespace Core {
static Xbyak::Reg ZydisToXbyakRegister(const ZydisRegister reg) {
if (reg >= ZYDIS_REGISTER_EAX && reg <= ZYDIS_REGISTER_R15D) {
return Xbyak::Reg32(reg - ZYDIS_REGISTER_EAX + Xbyak::Operand::EAX);
}
if (reg >= ZYDIS_REGISTER_RAX && reg <= ZYDIS_REGISTER_R15) {
return Xbyak::Reg64(reg - ZYDIS_REGISTER_RAX + Xbyak::Operand::RAX);
}
UNREACHABLE_MSG("Unsupported register: {}", static_cast<u32>(reg));
}
static Xbyak::Reg ZydisToXbyakRegisterOperand(const ZydisDecodedOperand& operand) {
ASSERT_MSG(operand.type == ZYDIS_OPERAND_TYPE_REGISTER,
"Expected register operand, got type: {}", static_cast<u32>(operand.type));
return ZydisToXbyakRegister(operand.reg.value);
}
static Xbyak::Address ZydisToXbyakMemoryOperand(const ZydisDecodedOperand& operand) {
ASSERT_MSG(operand.type == ZYDIS_OPERAND_TYPE_MEMORY, "Expected memory operand, got type: {}",
static_cast<u32>(operand.type));
Xbyak::RegExp expression{};
if (operand.mem.base != ZYDIS_REGISTER_NONE) {
expression = expression + ZydisToXbyakRegister(operand.mem.base);
}
if (operand.mem.index != ZYDIS_REGISTER_NONE) {
if (operand.mem.scale != 0) {
expression = expression + ZydisToXbyakRegister(operand.mem.index) * operand.mem.scale;
} else {
expression = expression + ZydisToXbyakRegister(operand.mem.index);
}
}
if (operand.mem.disp.size != 0 && operand.mem.disp.value != 0) {
expression = expression + operand.mem.disp.value;
}
return Xbyak::util::ptr[expression];
}
static std::unique_ptr<Xbyak::Operand> ZydisToXbyakOperand(const ZydisDecodedOperand& operand) {
switch (operand.type) {
case ZYDIS_OPERAND_TYPE_REGISTER: {
return std::make_unique<Xbyak::Reg>(ZydisToXbyakRegisterOperand(operand));
}
case ZYDIS_OPERAND_TYPE_MEMORY: {
return std::make_unique<Xbyak::Address>(ZydisToXbyakMemoryOperand(operand));
}
default:
UNREACHABLE_MSG("Unsupported operand type: {}", static_cast<u32>(operand.type));
}
}
static bool OperandUsesRegister(const Xbyak::Operand* operand, int index) {
if (operand->isREG()) {
return operand->getIdx() == index;
}
if (operand->isMEM()) {
const Xbyak::RegExp& reg_exp = operand->getAddress().getRegExp();
return reg_exp.getBase().getIdx() == index || reg_exp.getIndex().getIdx() == index;
}
UNREACHABLE_MSG("Unsupported operand kind: {}", static_cast<u32>(operand->getKind()));
}
static bool IsRegisterAllocated(
const std::initializer_list<const Xbyak::Operand*>& allocated_registers, const int index) {
return std::ranges::find_if(allocated_registers.begin(), allocated_registers.end(),
[index](const Xbyak::Operand* operand) {
return OperandUsesRegister(operand, index);
}) != allocated_registers.end();
}
static Xbyak::Reg AllocateScratchRegister(
const std::initializer_list<const Xbyak::Operand*> allocated_registers, const u32 bits) {
for (int index = Xbyak::Operand::R8; index <= Xbyak::Operand::R15; index++) {
if (!IsRegisterAllocated(allocated_registers, index)) {
return Xbyak::Reg32e(index, static_cast<int>(bits));
}
}
UNREACHABLE_MSG("Out of scratch registers!");
}
#ifdef __APPLE__
static constexpr u32 MaxSavedRegisters = 3;
static pthread_key_t register_save_slots[MaxSavedRegisters];
static std::once_flag register_save_init_flag;
static_assert(sizeof(void*) == sizeof(u64),
"Cannot fit a register inside a thread local storage slot.");
static void InitializeRegisterSaveSlots() {
for (u32 i = 0; i < MaxSavedRegisters; i++) {
ASSERT_MSG(pthread_key_create(&register_save_slots[i], nullptr) == 0,
"Unable to allocate thread-local register save slot {}", i);
}
}
static void SaveRegisters(Xbyak::CodeGenerator& c, const std::initializer_list<Xbyak::Reg> regs) {
ASSERT_MSG(regs.size() <= MaxSavedRegisters, "Not enough space to save {} registers.",
regs.size());
std::call_once(register_save_init_flag, &InitializeRegisterSaveSlots);
u32 index = 0;
for (const auto& reg : regs) {
const auto offset = reinterpret_cast<void*>(register_save_slots[index++] * sizeof(void*));
c.putSeg(Xbyak::util::gs);
c.mov(Xbyak::util::qword[offset], reg.cvt64());
}
}
static void RestoreRegisters(Xbyak::CodeGenerator& c,
const std::initializer_list<Xbyak::Reg> regs) {
ASSERT_MSG(regs.size() <= MaxSavedRegisters, "Not enough space to restore {} registers.",
regs.size());
std::call_once(register_save_init_flag, &InitializeRegisterSaveSlots);
u32 index = 0;
for (const auto& reg : regs) {
const auto offset = reinterpret_cast<void*>(register_save_slots[index++] * sizeof(void*));
c.putSeg(Xbyak::util::gs);
c.mov(reg.cvt64(), Xbyak::util::qword[offset]);
}
}
static void GenerateANDN(const ZydisDecodedOperand* operands, Xbyak::CodeGenerator& c) {
const auto dst = ZydisToXbyakRegisterOperand(operands[0]);
const auto src1 = ZydisToXbyakRegisterOperand(operands[1]);
const auto src2 = ZydisToXbyakOperand(operands[2]);
const auto scratch = AllocateScratchRegister({&dst, &src1, src2.get()}, dst.getBit());
SaveRegisters(c, {scratch});
c.mov(scratch, src1);
c.not_(scratch);
c.and_(scratch, *src2);
c.mov(dst, scratch);
RestoreRegisters(c, {scratch});
}
static void GenerateBEXTR(const ZydisDecodedOperand* operands, Xbyak::CodeGenerator& c) {
const auto dst = ZydisToXbyakRegisterOperand(operands[0]);
const auto src = ZydisToXbyakOperand(operands[1]);
const auto start_len = ZydisToXbyakRegisterOperand(operands[2]);
const Xbyak::Reg32e shift(Xbyak::Operand::RCX, static_cast<int>(start_len.getBit()));
const auto scratch1 =
AllocateScratchRegister({&dst, src.get(), &start_len, &shift}, dst.getBit());
const auto scratch2 =
AllocateScratchRegister({&dst, src.get(), &start_len, &shift, &scratch1}, dst.getBit());
if (dst.getIdx() == shift.getIdx()) {
SaveRegisters(c, {scratch1, scratch2});
} else {
SaveRegisters(c, {scratch1, scratch2, shift});
}
c.mov(scratch1, *src);
if (shift.getIdx() != start_len.getIdx()) {
c.mov(shift, start_len);
}
c.shr(scratch1, shift.cvt8());
c.shr(shift, 8);
c.mov(scratch2, 1);
c.shl(scratch2, shift.cvt8());
c.dec(scratch2);
c.mov(dst, scratch1);
c.and_(dst, scratch2);
if (dst.getIdx() == shift.getIdx()) {
RestoreRegisters(c, {scratch1, scratch2});
} else {
RestoreRegisters(c, {scratch1, scratch2, shift});
}
}
static void GenerateBLSI(const ZydisDecodedOperand* operands, Xbyak::CodeGenerator& c) {
const auto dst = ZydisToXbyakRegisterOperand(operands[0]);
const auto src = ZydisToXbyakOperand(operands[1]);
const auto scratch = AllocateScratchRegister({&dst, src.get()}, dst.getBit());
SaveRegisters(c, {scratch});
c.mov(scratch, *src);
c.neg(scratch);
c.and_(scratch, *src);
c.mov(dst, scratch);
RestoreRegisters(c, {scratch});
}
static void GenerateBLSMSK(const ZydisDecodedOperand* operands, Xbyak::CodeGenerator& c) {
const auto dst = ZydisToXbyakRegisterOperand(operands[0]);
const auto src = ZydisToXbyakOperand(operands[1]);
const auto scratch = AllocateScratchRegister({&dst, src.get()}, dst.getBit());
SaveRegisters(c, {scratch});
c.mov(scratch, *src);
c.dec(scratch);
c.xor_(scratch, *src);
c.mov(dst, scratch);
RestoreRegisters(c, {scratch});
}
static void GenerateBLSR(const ZydisDecodedOperand* operands, Xbyak::CodeGenerator& c) {
const auto dst = ZydisToXbyakRegisterOperand(operands[0]);
const auto src = ZydisToXbyakOperand(operands[1]);
const auto scratch = AllocateScratchRegister({&dst, src.get()}, dst.getBit());
SaveRegisters(c, {scratch});
c.mov(scratch, *src);
c.dec(scratch);
c.and_(scratch, *src);
c.mov(dst, scratch);
RestoreRegisters(c, {scratch});
}
#endif // __APPLE__
static bool FilterTcbAccess(const ZydisDecodedOperand* operands) {
const auto& dst_op = operands[0];
const auto& src_op = operands[1];
// Patch only 'mov (64-bit register), fs:[0]'
return src_op.type == ZYDIS_OPERAND_TYPE_MEMORY && src_op.mem.segment == ZYDIS_REGISTER_FS &&
src_op.mem.base == ZYDIS_REGISTER_NONE && src_op.mem.index == ZYDIS_REGISTER_NONE &&
src_op.mem.disp.value == 0 && dst_op.reg.value >= ZYDIS_REGISTER_RAX &&
dst_op.reg.value <= ZYDIS_REGISTER_R15;
}
static void GenerateTcbAccess(const ZydisDecodedOperand* operands, Xbyak::CodeGenerator& c) {
const auto dst = ZydisToXbyakRegisterOperand(operands[0]);
const auto slot = GetTcbKey();
#if defined(_WIN32)
// The following logic is based on the wine implementation of TlsGetValue
// https://github.com/wine-mirror/wine/blob/a27b9551/dlls/kernelbase/thread.c#L719
static constexpr u32 TlsSlotsOffset = 0x1480;
static constexpr u32 TlsExpansionSlotsOffset = 0x1780;
static constexpr u32 TlsMinimumAvailable = 64;
const u32 teb_offset = slot < TlsMinimumAvailable ? TlsSlotsOffset : TlsExpansionSlotsOffset;
const u32 tls_index = slot < TlsMinimumAvailable ? slot : slot - TlsMinimumAvailable;
// Load the pointer to the table of TLS slots.
c.putSeg(Xbyak::util::gs);
c.mov(dst, Xbyak::util::ptr[reinterpret_cast<void*>(teb_offset)]);
// Load the pointer to our buffer.
c.mov(dst, Xbyak::util::qword[dst + tls_index * sizeof(LPVOID)]);
#elif defined(__APPLE__)
// The following logic is based on the Darwin implementation of _os_tsd_get_direct, used by
// pthread_getspecific https://github.com/apple/darwin-xnu/blob/main/libsyscall/os/tsd.h#L89-L96
c.putSeg(Xbyak::util::gs);
c.mov(dst, Xbyak::util::qword[reinterpret_cast<void*>(slot * sizeof(void*))]);
#else
const auto src = ZydisToXbyakMemoryOperand(operands[1]);
// Replace fs read with gs read.
c.putSeg(Xbyak::util::gs);
c.mov(dst, src);
#endif
}
bool FilterAlwaysTrue(const ZydisDecodedOperand* operands) {
return true;
}
using PatchFilter = bool (*)(const ZydisDecodedOperand*);
using InstructionGenerator = void (*)(const ZydisDecodedOperand*, Xbyak::CodeGenerator&);
struct PatchInfo {
/// Filter for more granular patch conditions past just the instruction mnemonic.
PatchFilter filter;
/// Generator for the patch/trampoline.
InstructionGenerator generator;
/// Whether to use a trampoline for this patch.
bool trampoline;
};
static const std::unordered_map<ZydisMnemonic, PatchInfo> Patches = {
#if defined(_WIN32) || defined(__APPLE__)
// Windows and Apple need a trampoline.
{ZYDIS_MNEMONIC_MOV, {FilterTcbAccess, GenerateTcbAccess, true}},
#else
{ZYDIS_MNEMONIC_MOV, {FilterTcbAccess, GenerateTcbAccess, false}},
#endif
#ifdef __APPLE__
// BMI1 instructions that are not supported by Rosetta 2 on Apple Silicon.
{ZYDIS_MNEMONIC_ANDN, {FilterAlwaysTrue, GenerateANDN, true}},
{ZYDIS_MNEMONIC_BEXTR, {FilterAlwaysTrue, GenerateBEXTR, true}},
{ZYDIS_MNEMONIC_BLSI, {FilterAlwaysTrue, GenerateBLSI, true}},
{ZYDIS_MNEMONIC_BLSMSK, {FilterAlwaysTrue, GenerateBLSMSK, true}},
{ZYDIS_MNEMONIC_BLSR, {FilterAlwaysTrue, GenerateBLSR, true}},
#endif
};
void PatchInstructions(u64 segment_addr, u64 segment_size, Xbyak::CodeGenerator& c) {
if (Patches.empty()) {
// Nothing to patch on this platform.
return;
}
ZydisDecoder instr_decoder;
ZydisDecodedInstruction instruction;
ZydisDecodedOperand operands[ZYDIS_MAX_OPERAND_COUNT];
ZydisDecoderInit(&instr_decoder, ZYDIS_MACHINE_MODE_LONG_64, ZYDIS_STACK_WIDTH_64);
u8* code = reinterpret_cast<u8*>(segment_addr);
u8* end = code + segment_size;
while (code < end) {
ZyanStatus status =
ZydisDecoderDecodeFull(&instr_decoder, code, end - code, &instruction, operands);
if (!ZYAN_SUCCESS(status)) {
code++;
continue;
}
if (Patches.contains(instruction.mnemonic)) {
auto patch_info = Patches.at(instruction.mnemonic);
if (patch_info.filter(operands)) {
auto patch_gen = Xbyak::CodeGenerator(instruction.length, code);
if (patch_info.trampoline) {
const auto trampoline_ptr = c.getCurr();
patch_info.generator(operands, c);
// Return to the following instruction at the end of the trampoline.
c.jmp(code + instruction.length);
// Replace instruction with near jump to the trampoline.
patch_gen.jmp(trampoline_ptr, Xbyak::CodeGenerator::LabelType::T_NEAR);
} else {
patch_info.generator(operands, patch_gen);
}
const auto patch_size = patch_gen.getCurr() - code;
if (patch_size > 0) {
ASSERT_MSG(instruction.length >= patch_size,
"Instruction {} with length {} is too short to replace at: {}",
ZydisMnemonicGetString(instruction.mnemonic), instruction.length,
fmt::ptr(code));
// Fill remaining space with nops.
patch_gen.nop(instruction.length - patch_size);
LOG_DEBUG(Core, "Patched instruction '{}' at: {}",
ZydisMnemonicGetString(instruction.mnemonic), fmt::ptr(code));
}
}
}
code += instruction.length;
}
}
} // namespace Core

View File

@ -9,6 +9,7 @@ class CodeGenerator;
namespace Core {
/// Patches CPU instructions that cannot run as-is on the host.
void PatchInstructions(u64 segment_addr, u64 segment_size, Xbyak::CodeGenerator& c);
} // namespace Core

View File

@ -1,291 +0,0 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <memory>
#include <mutex>
#include <Zydis/Zydis.h>
#include <xbyak/xbyak.h>
#include "common/assert.h"
#include "common/types.h"
#include "instruction_emulator.h"
namespace Core {
static Xbyak::Reg ZydisToXbyakRegister(const ZydisRegister reg) {
if (reg >= ZYDIS_REGISTER_EAX && reg <= ZYDIS_REGISTER_R15D) {
return Xbyak::Reg32(reg - ZYDIS_REGISTER_EAX);
} else if (reg >= ZYDIS_REGISTER_RAX && reg <= ZYDIS_REGISTER_R15) {
return Xbyak::Reg64(reg - ZYDIS_REGISTER_RAX);
} else {
UNREACHABLE_MSG("Unsupported register: {}", static_cast<u32>(reg));
}
}
static Xbyak::Reg ZydisToXbyakRegisterOperand(const ZydisDecodedOperand& operand) {
ASSERT_MSG(operand.type == ZYDIS_OPERAND_TYPE_REGISTER, "Expected register operand, got type: {}", static_cast<u32>(operand.type));
return ZydisToXbyakRegister(operand.reg.value);
}
static Xbyak::Address ZydisToXbyakMemoryOperand(const ZydisDecodedOperand& operand) {
ASSERT_MSG(operand.type == ZYDIS_OPERAND_TYPE_MEMORY, "Expected memory operand, got type: {}", static_cast<u32>(operand.type));
Xbyak::RegExp expression{};
if (operand.mem.base != ZYDIS_REGISTER_NONE) {
expression = expression + ZydisToXbyakRegister(operand.mem.base);
}
if (operand.mem.index != ZYDIS_REGISTER_NONE) {
if (operand.mem.scale != 0) {
expression = expression + ZydisToXbyakRegister(operand.mem.index) * operand.mem.scale;
} else {
expression = expression + ZydisToXbyakRegister(operand.mem.index);
}
}
if (operand.mem.disp.size != 0 && operand.mem.disp.value != 0) {
expression = expression + operand.mem.disp.value;
}
return Xbyak::util::ptr[expression];
}
static std::unique_ptr<Xbyak::Operand> ZydisToXbyakOperand(const ZydisDecodedOperand& operand) {
switch (operand.type) {
case ZYDIS_OPERAND_TYPE_REGISTER: {
return std::make_unique<Xbyak::Reg>(ZydisToXbyakRegisterOperand(operand));
}
case ZYDIS_OPERAND_TYPE_MEMORY: {
return std::make_unique<Xbyak::Address>(ZydisToXbyakMemoryOperand(operand));
}
default:
UNREACHABLE_MSG("Unsupported operand type: {}", static_cast<u32>(operand.type));
}
}
#ifdef __APPLE__
static bool OperandUsesRegister(const Xbyak::Operand* operand, int index) {
if (operand->isREG()) {
return operand->getIdx() == index;
}
if (operand->isMEM()) {
const Xbyak::RegExp& reg_exp = operand->getAddress().getRegExp();
return reg_exp.getBase().getIdx() == index || reg_exp.getIndex().getIdx() == index;
}
UNREACHABLE_MSG("Unsupported operand kind: {}", static_cast<u32>(operand->getKind()));
}
static bool IsRegisterAllocated(const std::initializer_list<const Xbyak::Operand*>& allocated_registers, const int index) {
return std::ranges::find_if(
allocated_registers.begin(), allocated_registers.end(),
[index](const Xbyak::Operand* operand) { return OperandUsesRegister(operand, index); }) != allocated_registers.end();
}
static Xbyak::Reg AllocateScratchRegister(const std::initializer_list<const Xbyak::Operand*> allocated_registers, const u32 bits) {
for (int index = Xbyak::Operand::R8; index <= Xbyak::Operand::R15; index++) {
if (!IsRegisterAllocated(allocated_registers, index)) {
return Xbyak::Reg32e(index, static_cast<int>(bits));
}
}
UNREACHABLE_MSG("Out of scratch registers!");
}
static constexpr u32 MaxSavedRegisters = 3;
static pthread_key_t register_save_slots[MaxSavedRegisters];
static std::once_flag register_save_init_flag;
static_assert(sizeof(void*) == sizeof(u64), "Cannot fit a register inside a thread local storage slot.");
static void InitializeRegisterSaveSlots() {
for (u32 i = 0; i < MaxSavedRegisters; i++) {
ASSERT_MSG(pthread_key_create(&register_save_slots[i], nullptr) == 0,
"Unable to allocate thread-local register save slot {}", i);
}
}
static void SaveRegisters(Xbyak::CodeGenerator& c, const std::initializer_list<Xbyak::Reg> regs) {
ASSERT_MSG(regs.size() <= MaxSavedRegisters, "Not enough space to save {} registers.", regs.size());
std::call_once(register_save_init_flag, &InitializeRegisterSaveSlots);
u32 index = 0;
for (const auto& reg : regs) {
const auto offset = reinterpret_cast<void*>(register_save_slots[index++] * sizeof(void*));
c.putSeg(Xbyak::util::gs);
c.mov(Xbyak::util::qword[offset], reg.cvt64());
}
}
static void RestoreRegisters(Xbyak::CodeGenerator& c, const std::initializer_list<Xbyak::Reg> regs) {
ASSERT_MSG(regs.size() <= MaxSavedRegisters, "Not enough space to restore {} registers.", regs.size());
std::call_once(register_save_init_flag, &InitializeRegisterSaveSlots);
u32 index = 0;
for (const auto& reg : regs) {
const auto offset = reinterpret_cast<void*>(register_save_slots[index++] * sizeof(void*));
c.putSeg(Xbyak::util::gs);
c.mov(reg.cvt64(), Xbyak::util::qword[offset]);
}
}
static void GenerateANDN(const ZydisDecodedOperand* operands, Xbyak::CodeGenerator& c) {
const auto dst = ZydisToXbyakRegisterOperand(operands[0]);
const auto src1 = ZydisToXbyakRegisterOperand(operands[1]);
const auto src2 = ZydisToXbyakOperand(operands[2]);
const auto scratch = AllocateScratchRegister({&dst, &src1, src2.get()}, dst.getBit());
SaveRegisters(c, {scratch});
c.mov(scratch, src1);
c.not_(scratch);
c.and_(scratch, *src2);
c.mov(dst, scratch);
RestoreRegisters(c, {scratch});
}
static void GenerateBEXTR(const ZydisDecodedOperand* operands, Xbyak::CodeGenerator& c) {
const auto dst = ZydisToXbyakRegisterOperand(operands[0]);
const auto src = ZydisToXbyakOperand(operands[1]);
const auto start_len = ZydisToXbyakRegisterOperand(operands[2]);
const Xbyak::Reg32e shift(Xbyak::Operand::RCX, static_cast<int>(start_len.getBit()));
const auto scratch1 = AllocateScratchRegister({&dst, src.get(), &start_len, &shift}, dst.getBit());
const auto scratch2 = AllocateScratchRegister({&dst, src.get(), &start_len, &shift, &scratch1}, dst.getBit());
if (dst.getIdx() == shift.getIdx()) {
SaveRegisters(c, {scratch1, scratch2});
} else {
SaveRegisters(c, {scratch1, scratch2, shift});
}
c.mov(scratch1, *src);
if (shift.getIdx() != start_len.getIdx()) {
c.mov(shift, start_len);
}
c.shr(scratch1, shift.cvt8());
c.shr(shift, 8);
c.mov(scratch2, 1);
c.shl(scratch2, shift.cvt8());
c.dec(scratch2);
c.mov(dst, scratch1);
c.and_(dst, scratch2);
if (dst.getIdx() == shift.getIdx()) {
RestoreRegisters(c, {scratch1, scratch2});
} else {
RestoreRegisters(c, {scratch1, scratch2, shift});
}
}
static void GenerateBLSI(const ZydisDecodedOperand* operands, Xbyak::CodeGenerator& c) {
const auto dst = ZydisToXbyakRegisterOperand(operands[0]);
const auto src = ZydisToXbyakOperand(operands[1]);
const auto scratch = AllocateScratchRegister({&dst, src.get()}, dst.getBit());
SaveRegisters(c, {scratch});
c.mov(scratch, *src);
c.neg(scratch);
c.and_(scratch, *src);
c.mov(dst, scratch);
RestoreRegisters(c, {scratch});
}
static void GenerateBLSMSK(const ZydisDecodedOperand* operands, Xbyak::CodeGenerator& c) {
const auto dst = ZydisToXbyakRegisterOperand(operands[0]);
const auto src = ZydisToXbyakOperand(operands[1]);
const auto scratch = AllocateScratchRegister({&dst, src.get()}, dst.getBit());
SaveRegisters(c, {scratch});
c.mov(scratch, *src);
c.dec(scratch);
c.xor_(scratch, *src);
c.mov(dst, scratch);
RestoreRegisters(c, {scratch});
}
static void GenerateBLSR(const ZydisDecodedOperand* operands, Xbyak::CodeGenerator& c) {
const auto dst = ZydisToXbyakRegisterOperand(operands[0]);
const auto src = ZydisToXbyakOperand(operands[1]);
const auto scratch = AllocateScratchRegister({&dst, src.get()}, dst.getBit());
SaveRegisters(c, {scratch});
c.mov(scratch, *src);
c.dec(scratch);
c.and_(scratch, *src);
c.mov(dst, scratch);
RestoreRegisters(c, {scratch});
}
#endif
using InstructionGenerator = void(*)(const ZydisDecodedOperand*, Xbyak::CodeGenerator&);
static const std::unordered_map<ZydisMnemonic, InstructionGenerator> InstructionGenerators = {
#ifdef __APPLE__
// BMI1 instructions that are not supported by Rosetta 2 on Apple Silicon.
{ZYDIS_MNEMONIC_ANDN, &GenerateANDN},
{ZYDIS_MNEMONIC_BEXTR, &GenerateBEXTR},
{ZYDIS_MNEMONIC_BLSI, &GenerateBLSI},
{ZYDIS_MNEMONIC_BLSMSK, &GenerateBLSMSK},
{ZYDIS_MNEMONIC_BLSR, &GenerateBLSR},
#endif
};
void PatchInstructions(u64 segment_addr, u64 segment_size, Xbyak::CodeGenerator& c) {
if (InstructionGenerators.empty()) {
// Nothing to patch on this platform.
return;
}
ZydisDecoder instr_decoder;
ZydisDecodedInstruction instruction;
ZydisDecodedOperand operands[ZYDIS_MAX_OPERAND_COUNT];
ZydisDecoderInit(&instr_decoder, ZYDIS_MACHINE_MODE_LONG_64, ZYDIS_STACK_WIDTH_64);
u8* code = reinterpret_cast<u8*>(segment_addr);
u8* end = code + segment_size;
while (code < end) {
ZyanStatus status =
ZydisDecoderDecodeFull(&instr_decoder, code, end - code, &instruction, operands);
if (!ZYAN_SUCCESS(status)) {
code++;
continue;
}
if (InstructionGenerators.contains(instruction.mnemonic)) {
LOG_DEBUG(Core, "Replacing instruction '{}' at: {}", ZydisMnemonicGetString(instruction.mnemonic),
fmt::ptr(code));
// Replace instruction with near jump to the trampoline.
static constexpr u32 NearJmpSize = 5;
ASSERT_MSG(instruction.length >= NearJmpSize, "Instruction {} with length {} is too short to replace at: {}",
ZydisMnemonicGetString(instruction.mnemonic), instruction.length, fmt::ptr(code));
auto patch = Xbyak::CodeGenerator(instruction.length, code);
patch.jmp(c.getCurr(), Xbyak::CodeGenerator::LabelType::T_NEAR);
patch.nop(instruction.length - NearJmpSize);
auto generator = InstructionGenerators.at(instruction.mnemonic);
generator(operands, c);
c.jmp(code + instruction.length); // Return to the following instruction.
}
code += instruction.length;
}
}
} // namespace Loader

View File

@ -7,11 +7,10 @@
#include "common/logging/log.h"
#include "common/string_util.h"
#include "core/aerolib/aerolib.h"
#include "core/instruction_emulator.h"
#include "core/cpu_patches.h"
#include "core/loader/dwarf.h"
#include "core/memory.h"
#include "core/module.h"
#include "core/tls.h"
namespace Core {
@ -132,7 +131,6 @@ void Module::LoadModuleToMemory(u32& max_tls_index) {
add_segment(elf_pheader[i]);
if (elf_pheader[i].p_flags & PF_EXEC) {
PatchTLS(segment_addr, segment_file_size, c);
PatchInstructions(segment_addr, segment_file_size, c);
}
break;

View File

@ -1,141 +1,58 @@
// SPDX-FileCopyrightText: Copyright 2024 shadPS4 Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <xbyak/xbyak.h>
#include <mutex>
#include "common/assert.h"
#include "common/types.h"
#include "core/tls.h"
#ifdef _WIN32
#include <windows.h>
#elif !defined(__APPLE__)
#include <asm/prctl.h> /* Definition of ARCH_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#elif defined(__APPLE__)
#include <pthread.h>
#endif
namespace Core {
struct TLSPattern {
u8 pattern[5];
u8 pattern_size;
u8 imm_size;
u8 target_reg;
};
constexpr static TLSPattern TlsPatterns[] = {
// 64 48 A1 | 00 00 00 00 00 00 00 00 # mov rax, qword ptr fs:[64b imm]
{{0x64, 0x48, 0xA1}, 3, 8, 0},
// 64 48 8B 04 25 | 00 00 00 00 # mov rax,qword ptr fs:[0]
{{0x64, 0x48, 0x8B, 0x4, 0x25}, 5, 4, 0}, // rax
{{0x64, 0x48, 0x8B, 0xC, 0x25}, 5, 4, 1}, // rcx
{{0x64, 0x48, 0x8B, 0x14, 0x25}, 5, 4, 2}, // rdx
{{0x64, 0x48, 0x8B, 0x1C, 0x25}, 5, 4, 3}, // rbx
{{0x64, 0x48, 0x8B, 0x24, 0x25}, 5, 4, 4}, // rsp
{{0x64, 0x48, 0x8B, 0x2C, 0x25}, 5, 4, 5}, // rbp
{{0x64, 0x48, 0x8B, 0x34, 0x25}, 5, 4, 6}, // rsi
{{0x64, 0x48, 0x8B, 0x3C, 0x25}, 5, 4, 7}, // rdi
{{0x64, 0x4C, 0x8B, 0x4, 0x25}, 5, 4, 8}, // r8
{{0x64, 0x4C, 0x8B, 0xC, 0x25}, 5, 4, 9}, // r9
{{0x64, 0x4C, 0x8B, 0x14, 0x25}, 5, 4, 10}, // r10
{{0x64, 0x4C, 0x8B, 0x1C, 0x25}, 5, 4, 11}, // r11
{{0x64, 0x4C, 0x8B, 0x24, 0x25}, 5, 4, 12}, // r12
{{0x64, 0x4C, 0x8B, 0x2C, 0x25}, 5, 4, 13}, // r13
{{0x64, 0x4C, 0x8B, 0x34, 0x25}, 5, 4, 14}, // r14
{{0x64, 0x4C, 0x8B, 0x3C, 0x25}, 5, 4, 15}, // r15
};
#ifdef _WIN32
static DWORD slot = 0;
void SetTcbBase(void* image_address) {
const BOOL result = TlsSetValue(slot, image_address);
ASSERT(result != 0);
}
Tcb* GetTcbBase() {
return reinterpret_cast<Tcb*>(TlsGetValue(slot));
}
static void AllocTcbKey() {
slot = TlsAlloc();
}
static void PatchFsAccess(u8* code, const TLSPattern& tls_pattern, Xbyak::CodeGenerator& c) {
using namespace Xbyak::util;
const auto total_size = tls_pattern.pattern_size + tls_pattern.imm_size;
void SetTcbBase(void* image_address) {
const BOOL result = TlsSetValue(GetTcbKey(), image_address);
ASSERT(result != 0);
}
// Replace mov instruction with near jump to the trampoline.
static constexpr u32 NearJmpSize = 5;
auto patch = Xbyak::CodeGenerator(total_size, code);
patch.jmp(c.getCurr(), Xbyak::CodeGenerator::LabelType::T_NEAR);
patch.nop(total_size - NearJmpSize);
// Write the trampoline.
// The following logic is based on the wine implementation of TlsGetValue
// https://github.com/wine-mirror/wine/blob/a27b9551/dlls/kernelbase/thread.c#L719
static constexpr u32 TlsSlotsOffset = 0x1480;
static constexpr u32 TlsExpansionSlotsOffset = 0x1780;
static constexpr u32 TlsMinimumAvailable = 64;
const u32 teb_offset = slot < TlsMinimumAvailable ? TlsSlotsOffset : TlsExpansionSlotsOffset;
const u32 tls_index = slot < TlsMinimumAvailable ? slot : slot - TlsMinimumAvailable;
const auto target_reg = Xbyak::Reg64(tls_pattern.target_reg);
c.mov(target_reg, teb_offset);
c.putSeg(gs);
c.mov(target_reg, ptr[target_reg]); // Load the pointer to the table of tls slots.
c.mov(target_reg,
qword[target_reg + tls_index * sizeof(LPVOID)]); // Load the pointer to our buffer.
c.jmp(code + total_size); // Return to the instruction right after the mov.
Tcb* GetTcbBase() {
return reinterpret_cast<Tcb*>(TlsGetValue(GetTcbKey()));
}
#elif defined(__APPLE__)
static pthread_key_t slot = 0;
static std::once_flag slot_alloc_flag;
static void AllocTcbKey() {
ASSERT(pthread_key_create(&slot, nullptr) == 0);
}
void SetTcbBase(void* image_address) {
std::call_once(slot_alloc_flag, &AllocTcbKey);
ASSERT(pthread_setspecific(slot, image_address) == 0);
ASSERT(pthread_setspecific(GetTcbKey(), image_address) == 0);
}
Tcb* GetTcbBase() {
std::call_once(slot_alloc_flag, &AllocTcbKey);
return reinterpret_cast<Tcb*>(pthread_getspecific(slot));
}
static void PatchFsAccess(u8* code, const TLSPattern& tls_pattern, Xbyak::CodeGenerator& c) {
using namespace Xbyak::util;
const auto total_size = tls_pattern.pattern_size + tls_pattern.imm_size;
// Allocate slot in the process if not done already.
std::call_once(slot_alloc_flag, &AllocTcbKey);
static constexpr u32 NearJmpSize = 5;
// Replace fs read with gs read.
auto patch = Xbyak::CodeGenerator(total_size, code);
patch.jmp(c.getCurr(), Xbyak::CodeGenerator::LabelType::T_NEAR);
patch.nop(total_size - NearJmpSize);
// Write the trampoline.
const auto target_reg = Xbyak::Reg64(tls_pattern.target_reg);
// The following logic is based on the Darwin implementation of _os_tsd_get_direct, used by pthread_getspecific
// https://github.com/apple/darwin-xnu/blob/main/libsyscall/os/tsd.h#L89-L96
c.putSeg(gs);
c.mov(target_reg, qword[reinterpret_cast<void*>(slot * sizeof(void*))]); // Load the slot data.
// Return to the instruction right after the mov.
c.jmp(code + total_size);
return reinterpret_cast<Tcb*>(pthread_getspecific(GetTcbKey()));
}
#else
static u32 slot = 0;
// Placeholder for code compatibility.
static constexpr u32 slot = 0;
static void AllocTcbKey() {}
void SetTcbBase(void* image_address) {
asm volatile("wrgsbase %0" ::"r"(image_address) : "memory");
@ -147,68 +64,13 @@ Tcb* GetTcbBase() {
return tcb;
}
static void AllocTcbKey() {}
static void PatchFsAccess(u8* code, const TLSPattern& tls_pattern, Xbyak::CodeGenerator& c) {
using namespace Xbyak::util;
const auto total_size = tls_pattern.pattern_size + tls_pattern.imm_size;
// Replace fs read with gs read.
auto patch = Xbyak::CodeGenerator(total_size, code);
patch.putSeg(gs);
}
#endif
void PatchTLS(u64 segment_addr, u64 segment_size, Xbyak::CodeGenerator& c) {
u8* code = reinterpret_cast<u8*>(segment_addr);
auto remaining_size = segment_size;
static std::once_flag slot_alloc_flag;
// Sometimes loads from the FS segment are prefixed with useless operand size prefix bytes like:
// |66 66 66| 64 48 8b 04 25 00 # mov rax, qword ptr fs:[0x0]
// These are probably ignored by the processor but when patching the instruction to a jump
// they cause issues. So look for them and patch them to nop to avoid problems.
static constexpr std::array<u8, 3> BadPrefix = {0x66, 0x66, 0x66};
while (remaining_size) {
for (const auto& tls_pattern : TlsPatterns) {
const auto total_size = tls_pattern.pattern_size + tls_pattern.imm_size;
if (remaining_size < total_size) {
continue;
}
if (std::memcmp(code, tls_pattern.pattern, tls_pattern.pattern_size) != 0) {
continue;
}
u64 offset = 0;
if (tls_pattern.imm_size == 4) {
std::memcpy(&offset, code + tls_pattern.pattern_size, sizeof(u32));
LOG_TRACE(Core_Linker, "PATTERN32 FOUND at {}, reg: {} offset: {:#x}",
fmt::ptr(code), tls_pattern.target_reg, offset);
} else {
std::memcpy(&offset, code + tls_pattern.pattern_size, sizeof(u64));
LOG_ERROR(Core_Linker, "PATTERN64 FOUND at {}, reg: {} offset: {:#x}",
fmt::ptr(code), tls_pattern.target_reg, offset);
continue;
}
ASSERT(offset == 0);
// Replace bogus instruction prefix with nops if it exists.
if (std::memcmp(code - BadPrefix.size(), BadPrefix.data(), sizeof(BadPrefix)) == 0) {
auto patch = Xbyak::CodeGenerator(BadPrefix.size(), code - BadPrefix.size());
patch.nop(BadPrefix.size());
}
// Patch access to FS register to a trampoline.
PatchFsAccess(code, tls_pattern, c);
// Move ahead in module.
code += total_size - 1;
remaining_size -= total_size - 1;
break;
}
code++;
remaining_size--;
}
u32 GetTcbKey() {
std::call_once(slot_alloc_flag, &AllocTcbKey);
return slot;
}
} // namespace Core

View File

@ -22,13 +22,13 @@ struct Tcb {
void* tcb_thread;
};
/// Gets the thread local storage key for the TCB block.
u32 GetTcbKey();
/// Sets the data pointer to the TCB block.
void SetTcbBase(void* image_address);
/// Retrieves Tcb structure for the calling thread.
Tcb* GetTcbBase();
/// Patches any instructions that access guest TLS to use provided storage.
void PatchTLS(u64 segment_addr, u64 segment_size, Xbyak::CodeGenerator& c);
} // namespace Core